
Polynomial Interpolators for
High-Quality Resampling of
Oversampled Audio

REVISED VERSION

by Olli Niemitalo in October 2001. Distribute, host and use this paper freely.
http://www.student.oulu.fi/~oniemita/DSP/INDEX.HTM

oniemitalo@sublevel3.org

Abstract

This paper discusses piece-wise polynomial interpolators used in audio resampling
and presents new low-order designs that are optimized for high-quality resampling
of oversampled audio. Source code and useful tables for using the interpolators are
included.

Welcome to read the paper that took three entire weeks (24/7) of my life, approximately 1
1000 of the

whole deal. It was a very educational experience. I learned to play with genetic/evolutionary al-
gorithms (big thanks to Bram de Jong for introducing Differential Evolution, which was also used in
generation of the passband approximations, and to the Duane Wise and Robert Bristow-Johnson
team-up, whose AES paper "Performance of Low-Order Polynomial Interpolators in the Presence of
Oversampled Input", this one owes a lot to). And I learned a new language, PostScript, which was
used to generate the graphs directly from a C++ program. And I got more and more familiar with LATEX.
Also some pretty nice interpolators were generated, and I’m sure to be using them in the future. I
could easily say I need a short break from interpolation, but I won’t because that’s such an over-used
closing joke.

You may notice that there aren’t any references. The additional bits of information for creating this
paper were gathered from Internet exclusively, and most of the sources were not named publications.
So if you wish to find them, just figure out a few keywords and head to http://www.google.com.

You are very welcome to send error reports/comments/opinions/announcements of implementa-
tions/work offers/free audio software/anything except viruses/spam to my e-mail (under the title).

1

Olli
Sticky Note
These are now out-dated. Also, if you sent e-mail to addresses in the original paper, I never received it. My stable e-mail address is o@iki.fi.

Olli
Highlight

CONTENTS 2

Contents

1. Introduction . 3

2. A bunch of interpolators . 5
2.1 Drop-sample, linear, B-spline 6
2.2 Lagrange . 8
2.3 Hermite (1st-order-osculating) 10
2.4 2nd-order-osculating . 13
2.5 Watte tri-linear and "parabolic 2x" 14

3. A quality measure . 16

4. New optimal designs . 19
4.1 2-point, 3rd-order optimal . 19
4.2 4-point, 2nd-order optimal . 21
4.3 4-point, 3rd-order optimal . 22
4.4 4-point, 4th-order optimal . 23
4.5 6-point, 4th-order optimal . 25
4.6 6-point, 5th-order optimal . 27

5. Comparison . 29
5.1 Linear . 29
5.2 B-spline . 30
5.3 Lagrange . 31
5.4 Hermite . 31
5.5 2nd-order-osculating . 32
5.6 Watte tri-linear . 33
5.7 Parabolic 2x . 33
5.8 Optimal . 34

6. Implementation . 36
6.1 Linear . 38
6.2 B-spline . 39
6.3 Lagrange . 40
6.4 Hermite . 42
6.5 2nd-order-osculating . 45
6.6 Watte tri-linear . 47
6.7 Parabolic 2x . 48
6.8 2-point, 3rd-order optimal . 49
6.9 4-point, 2nd-order optimal . 50
6.10 4-point, 3rd-order optimal . 51
6.11 4-point, 4th-order optimal . 53
6.12 6-point, 4th-order optimal . 54
6.13 6-point, 5th-order optimal . 57

1. Introduction 3

7. Summary . 59

8. Pre-emphasis . 61

9. Conclusion . 64

1. Introduction

Sampled audio data is a discrete-time representation of a continuous signal, per-
haps of the voltage that came from the microphone while recording. As a rule, the
data holds the amplitude values of the continuous signal at the boundaries of evenly
spaced time intervals. To change the sampling frequency by an unconstrained ratio
– a common task in audio processing – or to create sub-sample length delays, both
a form of resampling, one needs to be able to read the continuous signal between
the samples.

The solution is to create an approximation of the continuous signal, from the informa-
tion contained in the samples, and to sample that. This is called interpolation, finding
the function value between known samples. A common interpolation method is linear
interpolation, where the continuous function is approximated as piece-wise-linear by
drawing lines between the successive samples. An even more crude form of interpo-
lation is drop-sample interpolation, drawing a horizontal line from each sample until
the following sample.

Drop-sample and linear interpolation (as such) are not adequate for high-quality
resampling, but even linear interpolation is a big improvement compared to drop-
sample. Both of them fall into the category of piece-wise polynomial interpolators.
Theoretically, one could create a very high-order polynomial interpolator and get the
desired quality. A rule of thumb was formed from the results of this paper: The de-
pendence, of the interpolation error in dB scale and the computational complexity
of a good polynomial interpolator, is a linear function with an offset. Unfortunately,
the function is relatively gently sloping, so the polynomial order would need to be
increased to something unreasonable to get transparent quality.

A hybrid solution is to first oversample the input by a simple ratio using discrete
methods and then interpolate this oversampled data using a polynomial interpolator.
When a symmetrical FIR is used as the discrete oversampling filter, people often
call the method sinc interpolation, especially if the oversampling ratio is large, which
makes the FIR lowpass coefficient table resemble a windowed sinc and the impulse
response of the whole hybrid interpolator a piece-wise polynomial approximation of a
windowed sinc. The exact same results can be achieved differently, by interpolating
the FIR coefficient table with the polynomial interpolator and by filtering using the
interpolated coefficients, but this approach is computationally more expensive and

1. Introduction 4

not suggested.

This paper concentrates on improving the polynomial interpolation stage of the hybrid
method, for oversampling ratios of 2, 4, 8, 16 and 32 on the oversampling stage.

A discrete oversampling filter can increase the sampling frequency to an integer N
multiple, i.e. oversample by N. Typically, the filter is a FIR filter, because using a FIR
one can do "random access" on the data with no extra computational cost – a useful
property if N is high, because in such cases typically only a fraction of the samples
in the oversampled signal are used. Another recent solution is a polyphase structure
of (two) IIR all-pass filters1. Any lowpass structure could be used, so traditional
multirate filters are also an alternative.

In the simple FIR case, the tap number and hence memory consumption grow in
a linear relation to N. However, the instruction count per each obtained sample at
the new samplerate remains the same as only every Nth tap needs to be computed
for an output sample, the other taps landing on zero amplitude between the original
samples.

After oversampling by N, the signal is still discrete and the amplitude of the continu-
ous signal is only known at the new samplepoints. One could cheat a little and always
use the value of the most recent samplepoint before the asked place. This is known
as drop-sample, the lowest order member of the family of piece-wise polynomial
interpolators. It distorts the continuous signal in a similar manner as a sample-and-
hold circuit, making it look like stairsteps instead of the original. To really know in
what way this kind of distortion is bad, one must look at the spectrum.

The spectrum of a discrete-time (audio) signal is periodic by the sampling frequency
(fs) and symmetrical around 0Hz (due to real, i.e. non-complex samples). Ideally, in
range − fs

2 . . .+ fs
2 a discrete signal has an identical spectrum with the continuous signal

it is a representation of. The rest of the spectrum is stuffed with equally strong images
of this band, each centered around an integer multiple of fs, up to infinite frequencies.
Direct resampling of such a signal would certainly lead to severe problems (you’d get
nearly all of the new samples zero amplitude and possibly some occasional crackle
here and there).

A polynomial interpolator, for example drop-sample, can and should be thought of as
a filter with a continuous-time impulse response. A non-discrete impulse response
yields a non-periodic frequency response that has an overall descending envelope.
So the spectral images are attenuated by this continuous filter, making resampling a
more sensible process. Ideally, there would be no images, as the continuous (audio)
signal that we are trying to imitate is presumed to be bandlimited in range − fs

2 . . .+ fs
2 .

The goal is to have the images attenuated to low enough a level so that when they
in resampling map or alias over the audio band, they will not be audible.

1http://www.cmsa.wmin.ac.uk/~artur/Poly.html

Olli
Highlight

Olli
Sticky Note
This no longer works, look for HIIR by Laurent de Soras.

2. A bunch of interpolators 5

With the hybrid interpolator, we shall assign the original sampling frequency the sym-
bol fs0 and the sampling frequency after the discrete oversampling stage the symbol
fs1 = N fs0.

The N-times oversampling filter is a discrete lowpass filter that has its cutoff set at
the original fs0

2 (ideally). Because the impulse response is discrete, the frequency
response will still be periodic, but with a period of fs1 = N fs0. This period is a multiple
of the original period fs0, so we don’t have aliasing problems at this phase; that’s why
we chose an integer N to begin with. The oversampling filter has a stopband on,
and therefore (ideally) removes, all of the original images but those centered around
multiples of fs1.

The discrete oversampling filter can easily create the steep cutoff required and a
low stopband at its operating range, and the polynomial interpolator can attenuate
the remaining spectral images that could not be touched with discrete-time methods.
Polynomial interpolators don’t have a flat passband, which can be compensated for
in the frequency response of the oversampling filter, or in some other stage.

Piece-wise polynomial interpolation in this context means that individual polynomials
are created between successive samplepoints. These interpolators can be classified
both by the number of samplepoints required from the neighborhood for calculating
the value at a position, and by the order of the polynomial2. For example, if an inter-
polator takes four samplepoints and the polynomial is of third order, we shall classify
it as 4-point, 3rd-order (short 4p 3o). Depending on the interpolator, the polynomial
order is typically one less than the number of points, matching the number of coeffi-
cients in the polynomial to the number of samples, but there are many exceptions to
this rule.

This paper only considers interpolators that follow the scheme described in the
previous paragraph and have impulse responses symmetrical around zero, which
rules out interpolators that operate on an odd number of points (potential causes of
headache because they, when shifted in time to be symmetrical around zero, have
polynomial transitions not at the samplepoints but halfway between them).

2. A bunch of interpolators

The following are the known piece-wise polynomial interpolators that are potentially
useful for audio interpolation.

2The order of a polynomial is the order of the highest-order term in the polynomial. For example,
3x2 + x − 2 is second-order.

2. A bunch of interpolators 6

2.1 Drop-sample, linear, B-spline

B-splines are a family of interpolators that can be constructed by convolving a drop-
sample interpolator by a drop-sample interpolator repeated times. The drop-sample
interpolation impulse response is:

f (x) =

{
1 0 ≤ x < 1
0 otherwise.

Formula, figure: Drop-sample interpolation (also the 0th-order B-spline) im-
pulse response. The zero-amplitude areas are unmarked

Drop-sample is the 0th-order B-spline that operates only on one point. It, and other
even-order B-splines operate on an odd number of samples so we will not investi-
gate them further. The first three odd-order B-spline impulse responses are: (The
symmetry property has been exploited to shorten the expressions)

f (x) =

⎧⎨
⎩

1 − x 0 ≤ x < 1
0 1 ≤ x
f (−x) otherwise.

f(x)f(x)

LinearLinear
(2-point, 1st-order)(2-point, 1st-order)

Formula, figure: 2-point, 1st-order linear interpolation (also the 1st-order B-
spline) impulse response

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

2
3 − x2 + 1

2x3 0 ≤ x < 1
4
3 − 2x + x2 − 1

6x3 1 ≤ x < 2
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

B-splineB-spline
(4-point, 3rd-order)(4-point, 3rd-order)

Formula, figure: 4-point, 3rd-order B-spline impulse response

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

11
20 − 1

2x2 + 1
4x4 − 1

12x5 0 ≤ x < 1
17
40 + 5

8x − 7
4x2 + 5

4x3 − 3
8x4 + 1

24x5 1 ≤ x < 2
81
40 − 27

8 x + 9
4x2 − 3

4x3 + 1
8x4 − 1

120x5 2 ≤ x < 3
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

B-splineB-spline
(6-point, 5th-order)(6-point, 5th-order)

Formula, figure: 6-point, 5th-order B-spline impulse response

2. A bunch of interpolators 7

It is notable that higher-order B-splines don’t have zero crossings at integer x, there-
fore the interpolated curve will not necessarily go through the points. That as such
is not a bad quality.

The higher the order of a B-spline, the more continuous derivatives it has. The num-
ber of continuous successive derivatives, also counting the impulse response func-
tion itself as the 0th derivative, has shown to define the slope of the overall spectral
envelope of any piece-wise polynomial interpolator. The slope is that number plus
1, times -6dB/oct. For B-splines, the number is same as the order, as can be seen
here.

f(x)f(x)

LinearLinear
(2-point, 1st-order)(2-point, 1st-order)

Figure: Linear interpolator, no continuous derivatives

f(x)f(x)

B-splineB-spline
(4-point, 3rd-order)(4-point, 3rd-order)

f’(x)f’(x)

B-splineB-spline
(4-point, 3rd-order)(4-point, 3rd-order)

f’’(x)f’’(x)

B-splineB-spline
(4-point, 3rd-order)(4-point, 3rd-order)

Figure: 3rd-order B-spline and its continuous derivatives

f(x)f(x)

B-splineB-spline
(6-point, 5th-order)(6-point, 5th-order)

f’(x)f’(x)

B-splineB-spline
(6-point, 5th-order)(6-point, 5th-order)

f’’(x)f’’(x)

B-splineB-spline
(6-point, 5th-order)(6-point, 5th-order)

f’’’(x)f’’’(x)

B-splineB-spline
(6-point, 5th-order)(6-point, 5th-order)

f’’’’(x)f’’’’(x)

B-splineB-spline
(6-point, 5th-order)(6-point, 5th-order)

Figure: 5th-order B-spline and its continuous derivatives

Neither is having continuous derivatives a quality as such. When it’s about audio, the
frequency response is all that counts. In the following plot we use angular frequency

2. A bunch of interpolators 8

in radians on the horizontal axis. Angular frequency is same as 2π f
fs
, i.e. two pi times

frequency divided by sampling frequency. 0Hz maps to 0 in angular frequency, fs
2 to

π and fs to 2π.

-144-144

-132-132

-120-120

-108-108

-96-96

-84-84

-72-72

-60-60

-48-48

-36-36

-24-24

-12-12

00

1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Linear (2-point, 1st-order)Linear (2-point, 1st-order)

B-spline (4-point, 3rd-order)B-spline (4-point, 3rd-order)

B-spline (6-point, 5th-order)B-spline (6-point, 5th-order)

Figure: Frequency responses of the first three odd-order B-splines, including
the linear interpolator

The frequency responses show wide holes at multiples of 2π. This means that as
the images of the lowest audio frequencies land on these areas, they get heavily
attenuated. On the other hand, the attenuation is not very strong at the images of
near π frequencies. Also, with no oversampling, the highest audio frequencies in the
passband are strongly attenuated, which certainly needs to be compensated for if
higher-order B-splines are used with no oversampling. Typically, one would calculate
the quality of an interpolator as the signal-to-noise ratio directly from the frequency
response, for example by subtracting the magnitude at the strongest sidelobe top
from the the magnitude at zero frequency, but we will later show why this is not an
adequate quality measure when the interpolated signal is sampled audio.

2.2 Lagrange

Lagrange polynomials are forced to go through a number of points. For example,
the 4-point Lagrange interpolator polynomial is formed so that it goes through all of
the four neighboring points, and the middle section is used. The 1st-order (2-point)
Lagrange interpolator is the linear interpolator, which was already presented as part
of the B-spline family. The order of the Lagrange polynomials is always one less than
the number of points. The third- and fifth-order Lagrange impulse responses are:

2. A bunch of interpolators 9

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1
2x − x2 + 1

2x3 0 ≤ x < 1
1 − 11

6 x + x2 − 1
6x3 1 ≤ x < 2

0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

LagrangeLagrange
(4-point, 3rd-order)(4-point, 3rd-order)

Formula, figure: 4-point, 3rd-order Lagrange impulse response

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 1
3x − 5

4x2 + 5
12x3 + 1

4x4 − 1
12x5 0 ≤ x < 1

1 − 13
12x − 5

8x2 + 25
24x3 − 3

8x4 + 1
24x5 1 ≤ x < 2

1 − 137
60 x + 15

8 x2 − 17
24x3 + 1

8x4 − 1
120x5 2 ≤ x < 3

0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

LagrangeLagrange
(6-point, 5th-order)(6-point, 5th-order)

Formula, figure: 6-point, 5th-order Lagrange impulse response

Lagrange interpolators do not have a continuous first derivative, but a surprise awaits
as we derive further.

f(x)f(x)

LagrangeLagrange
(4-point, 3rd-order)(4-point, 3rd-order)

f’(x)f’(x)

LagrangeLagrange
(4-point, 3rd-order)(4-point, 3rd-order)

f’’(x)f’’(x)

LagrangeLagrange
(4-point, 3rd-order)(4-point, 3rd-order)

Figure: 3rd-order Lagrange and its early derivatives

f(x)f(x)

LagrangeLagrange
(6-point, 5th-order)(6-point, 5th-order)

f’(x)f’(x)

LagrangeLagrange
(6-point, 5th-order)(6-point, 5th-order)

f’’(x)f’’(x)

LagrangeLagrange
(6-point, 5th-order)(6-point, 5th-order)

f’’’(x)f’’’(x)

LagrangeLagrange
(6-point, 5th-order)(6-point, 5th-order)

f’’’’(x)f’’’’(x)

LagrangeLagrange
(6-point, 5th-order)(6-point, 5th-order)

Figure: 5th-order Lagrange and its early derivatives

The surprise is every second derivative being continuous (except for the singular
discontinuities). The frequency responses of these interpolators are:

2. A bunch of interpolators 10

-144-144

-132-132

-120-120

-108-108

-96-96

-84-84

-72-72

-60-60

-48-48

-36-36

-24-24

-12-12

00

1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Linear (2-point, 1st-order)Linear (2-point, 1st-order)

Lagrange (4-point, 3rd-order)Lagrange (4-point, 3rd-order)

Lagrange (6-point, 5th-order)Lagrange (6-point, 5th-order)

Figure: Frequency responses of the 1st- (linear), 3rd- and 5th-order La-
grange

The sidelobes don’t get much lower as the order increases, but passband behaviour
improves, also the holes at multiples of 2π become broader.

2.3 Hermite (1st-order-osculating)

Hermite interpolation is the first-order member of the family of osculating interpola-
tors that in addition to matching the function value at the control points also match a
number of derivatives. Hermite interpolation matches the first derivative. Since the
actual derivative of the function (audio) is not known, Hermite interpolation matches
to the derivatives of even-order Lagrangian polynomes. For example, the 4-point
cubic Hermite will match its derivative at y[x] to the derivative of a (Lagrangian)
parabolic going through y[x − 1], y[x] and y[x + 1]. By increasing the order of the La-
grangians, one can create cubic Hermites that take advantage of more points. Note
that as the order of Lagrangians increases, they converge to sinc interpolators, but
the Hermite, limited by its cubic formulation, can only converge up to a point.

Another approach to create Hermite interpolators is to ramp between two successive
Lagrangians with a linear weighting ramp. This also ensures the first derivative to
match those of the Lagrangians at the points, but it also gives higher order Hermite
interpolators, increasing how close they (theoretically) can approach the perfect sinc
interpolator.

In fact, the 4-point Hermite can be constructed either way, and the same formula
pops out. Here are the Hermite impulse reponses for the 4-point and both of the
6-point versions.

2. A bunch of interpolators 11

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 5
2x2 + 3

2x3 0 ≤ x < 1
2 − 4x + 5

2x2 − 1
2x3 1 ≤ x < 2

0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

HermiteHermite
(4-point, 3rd-order)(4-point, 3rd-order)

Formula, figure: 4-point, 3rd-order Hermite impulse response. This is also
known as the Catmull-Rom spline, or the α = −1

2 case of cardinal splines,
where α is the derivative of the impulse response at x = 1.

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 7
3x2 + 4

3x3 0 ≤ x < 1
5
2 − 59

12x + 3x2 − 7
12x3 1 ≤ x < 2

− 3
2 + 7

4x − 2
3x2 + 1

12x3 2 ≤ x < 3
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

HermiteHermite
(6-point, 3rd-order)(6-point, 3rd-order)

Formula, figure: 6-point, 3rd-order Hermite impulse response
(first derivative matches with the first derivatives of the Lagrangians)

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 25
12x2 + 5

12x3 + 13
12x4 − 5

12x5 0 ≤ x < 1
1 + 5

12x − 35
8 x2 + 35

8 x3 − 13
8 x4 + 5

24x5 1 ≤ x < 2
3 − 29

4 x + 155
24 x2 − 65

24x3 + 13
24x4 − 1

24x5 2 ≤ x < 3
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

HermiteHermite
(6-point, 5th-order)(6-point, 5th-order)

Formula, figure: 6-point, 5th-order Hermite impulse response
(linear ramp between two Lagrangians)

Hermite interpolators have a continuous first derivative by definition, but let’s take a
deeper look anyhow.

f(x)f(x)

HermiteHermite
(4-point, 3rd-order)(4-point, 3rd-order)

f’(x)f’(x)

HermiteHermite
(4-point, 3rd-order)(4-point, 3rd-order)

f’’(x)f’’(x)

HermiteHermite
(4-point, 3rd-order)(4-point, 3rd-order)

Figure: 4-point, 3rd-order Hermite and its early derivatives

2. A bunch of interpolators 12

f(x)f(x)

HermiteHermite
(6-point, 3rd-order)(6-point, 3rd-order)

f’(x)f’(x)

HermiteHermite
(6-point, 3rd-order)(6-point, 3rd-order)

f’’(x)f’’(x)

HermiteHermite
(6-point, 3rd-order)(6-point, 3rd-order)

Figure: 6-point, 3rd-order Hermite and its early derivatives

f(x)f(x)

HermiteHermite
(6-point, 5th-order)(6-point, 5th-order)

f’(x)f’(x)

HermiteHermite
(6-point, 5th-order)(6-point, 5th-order)

f’’(x)f’’(x)

HermiteHermite
(6-point, 5th-order)(6-point, 5th-order)

f’’’(x)f’’’(x)

HermiteHermite
(6-point, 5th-order)(6-point, 5th-order)

f’’’’(x)f’’’’(x)

HermiteHermite
(6-point, 5th-order)(6-point, 5th-order)

Figure: 6-point, 5th-order Hermite and its early derivatives

-144-144

-132-132

-120-120

-108-108

-96-96

-84-84

-72-72

-60-60

-48-48

-36-36

-24-24

-12-12

00

1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Hermite (4-point, 3rd-order)Hermite (4-point, 3rd-order)

Hermite (6-point, 3rd-order)Hermite (6-point, 3rd-order)

Hermite (6-point, 5th-order)Hermite (6-point, 5th-order)

Figure: Frequency responses of 3rd- (4-point and 6-point) and 5th-order
Hermite

An interesting feature in the Hermite frequency responses is that the largest side-
lobes (compare for example to the frequency responses of Lagrange interpolators)
have been "punctured". The passband behaviour is quite nice, too, so cubic Hermite
is potentially useful as a stand-alone resampling interpolator.

2. A bunch of interpolators 13

2.4 2nd-order-osculating

The definition of 2nd-order osculating interpolators is the same as of the Hermites,
but also the second derivative is matched with the Lagrangians. Necessarily, the
order of the interpolation polynomial must be at least 5, since there are 6 parameters,
the function and two derivatives, all three at both of the two points, to match. Up to
the 6-point version, these parameters leave no degrees of freedom in the 5th-order
polynomial. The impulse responses are as follows.

f (x) =⎧⎪⎪⎨
⎪⎪⎩

1 − x2 − 9
2x3 + 15

2 x4 − 3x5 0 ≤ x < 1
−4 + 18x − 29x2 + 43

2 x3 − 15
2 x4 + x5 1 ≤ x < 2

0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

2nd-order-osculating2nd-order-osculating
(4-point, 5th-order)(4-point, 5th-order)

Formula, figure: 4-point, 5th-order 2nd-order-osculating impulse response

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 5
4x2 − 35

12x3 + 21
4 x4 − 25

12x5 0 ≤ x < 1
−4 + 75

4 x − 245
8 x2 + 545

24 x3 − 63
8 x4 + 25

24x5 1 ≤ x < 2
18 − 153

4 x + 255
8 x2 − 313

24 x3 + 21
8 x4 − 5

24x5 2 ≤ x < 3
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

2nd-order-osculating2nd-order-osculating
(6-point, 5th-order)(6-point, 5th-order)

Formula, figure: 6-point, 5th-order 2nd-order-osculating impulse response

Here are the derivatives, two first of which should be continuous.

f(x)f(x)

2nd-order-osculating2nd-order-osculating
(4-point, 5th-order)(4-point, 5th-order)

f’(x)f’(x)

2nd-order-osculating2nd-order-osculating
(4-point, 5th-order)(4-point, 5th-order)

f’’(x)f’’(x)

2nd-order-osculating2nd-order-osculating
(4-point, 5th-order)(4-point, 5th-order)

f’’’(x)f’’’(x)

2nd-order-osculating2nd-order-osculating
(4-point, 5th-order)(4-point, 5th-order)

Figure: 4-point, 5th-order 2nd-order-osculating and its early derivatives

2. A bunch of interpolators 14

f(x)f(x)

2nd-order-osculating2nd-order-osculating
(6-point, 5th-order)(6-point, 5th-order)

f’(x)f’(x)

2nd-order-osculating2nd-order-osculating
(6-point, 5th-order)(6-point, 5th-order)

f’’(x)f’’(x)

2nd-order-osculating2nd-order-osculating
(6-point, 5th-order)(6-point, 5th-order)

f’’’(x)f’’’(x)

2nd-order-osculating2nd-order-osculating
(6-point, 5th-order)(6-point, 5th-order)

Figure: 6-point 5th-order 2nd-order-osculating and its early derivatives

-144-144

-132-132

-120-120

-108-108

-96-96

-84-84

-72-72

-60-60

-48-48

-36-36

-24-24

-12-12

00

1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

2nd-order-osculating (4-point, 5th-order)2nd-order-osculating (4-point, 5th-order)

2nd-order-osculating (6-point, 5th-order)2nd-order-osculating (6-point, 5th-order)

Figure: Frequency responses of 4- and 6-point 2nd-order-osculating

The steeper overall spectral envelope slope than Hermite can be seen in the fre-
quency response. The sidelobes are not nearly as high as with Lagrange, but the
hole at 2π is a little narrower.

2.5 Watte tri-linear and "parabolic 2x"

These two interpolators do not fall in any of the previous categories.

Watte tri-linear was presented by Jon Watte on the music-dsp mailing list. It is con-
structed by first creating two linear functions, first going through y[x + 1] and y[x − 1]
and the second through y[x] and y[x+ 2], by shifting the first to penetrate y[x] and the
second to y[x + 1], and by weighting between them with a linear ramp. The impulse
response, which visually quite resembles a 4-point Lagrangian, is as follows.

2. A bunch of interpolators 15

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1
2x − 1

2x2 0 ≤ x < 1
1 − 3

2x + 1
2x2 1 ≤ x < 2

0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Watte tri-linearWatte tri-linear
(4-point, 2nd-order)(4-point, 2nd-order)

Formula, figure: 4-point, 2nd-order Watte tri-linear impulse response

"Parabolic 2x" is my own design, and was created to be the lowest order 4-point
interpolator with continuous function and first differential. As the differential must be
zero at x = 0 and at the endpoints x = ±2, and be continuous at the borders of the
sections, the only parameter left to define was the height of the curve, which was
set so that the integral x = −2..2 became unity to ensure magnitude 1 for DC in the
frequency response. The interpolated curve does not necessarily go through the
points. The formula:

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 − 1

4x2 0 ≤ x < 1
1 − x + 1

4x2 1 ≤ x < 2
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Parabolic 2xParabolic 2x
(4-point, 2nd-order)(4-point, 2nd-order)

Formula, figure: 4-point, 2nd-order parabolic 2x impulse response

Just for the fun of it, the derivatives for these odd-balls, followed by the frequency
response plots:

f(x)f(x)

Watte tri-linearWatte tri-linear
(4-point, 2nd-order)(4-point, 2nd-order)

f’(x)f’(x)

Watte tri-linearWatte tri-linear
(4-point, 2nd-order)(4-point, 2nd-order)

f’’(x)f’’(x)

Watte tri-linearWatte tri-linear
(4-point, 2nd-order)(4-point, 2nd-order)

Figure: Watte tri-linear and its early derivatives

f(x)f(x)

Parabolic 2xParabolic 2x
(4-point, 2nd-order)(4-point, 2nd-order)

f’(x)f’(x)

Parabolic 2xParabolic 2x
(4-point, 2nd-order)(4-point, 2nd-order)

f’’(x)f’’(x)

Parabolic 2xParabolic 2x
(4-point, 2nd-order)(4-point, 2nd-order)

Figure: Parabolic 2x and its early derivatives

3. A quality measure 16

-144-144

-132-132

-120-120

-108-108

-96-96

-84-84

-72-72

-60-60

-48-48

-36-36

-24-24

-12-12

00

1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Watte tri-linear (4-point, 2nd-order)Watte tri-linear (4-point, 2nd-order)

Parabolic 2x (4-point, 2nd-order)Parabolic 2x (4-point, 2nd-order)

Figure: Frequency responses of Watte tri-linear and parabolic 2x

Looking at the frequency responses (put in the same graph to save paper), Watte tri-
linear has an extraordinary steep cutoff slope, until the first short sidelobe. Parabolic
2x has a hole at π, which makes it suitable for use with oversampled data only. It has
nicely low sidelobes and wide holes at multiples of 2π though.

3. A quality measure

When measuring the quality of interpolators working on oversampled input data,
three things should be noted.

The first thing is the amount of input oversampling. We shall demonstrate this on a
linear interpolator. The following frequency response was plotted so that the angular
frequency corresponds to the sampling frequency of the oversampled data (N times
the original).

-144-144

-132-132

-120-120

-108-108

-96-96

-84-84

-72-72

-60-60

-48-48

-36-36

-24-24

-12-12

00

1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Linear (2-point, 1st-order)Linear (2-point, 1st-order)

2x-oversampled, Linear (2-point, 1st-order)2x-oversampled, Linear (2-point, 1st-order)

4x-oversampled, Linear (2-point, 1st-order)4x-oversampled, Linear (2-point, 1st-order)

Figure: Frequency responses of an ideal 1x, 2x, and 4x oversampling filter
combined with linear interpolation

As can be seen, the stopband required for the interpolator gets narrower as the
oversampling ratio N increases. This is because if the data is ideally oversampled,

3. A quality measure 17

there are no frequencies above π
N in the audio baseband, and the spectral images

are also narrowed accordingly.

The second thing to note is that the passband of an interpolator is not flat and this
must be compensated for through filtering, possibly in the oversampling stage. In
most cases, there is some attenuation towards higher passband frequencies, so this
compensation heightens the spectral images. We shall call this compensation pre-
emphasis and it depends only on the interpolator frequency response.

-144-144

-132-132

-120-120

-108-108

-96-96

-84-84

-72-72

-60-60

-48-48

-36-36

-24-24

-12-12

00

1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Linear (2-point, 1st-order)Linear (2-point, 1st-order)

Pre-emphasized, Linear (2-point, 1st-order)Pre-emphasized, Linear (2-point, 1st-order)

Figure: Frequency response of an ideal pre-emphasis filter combined with
linear interpolation

The third thing to note is that audio generally has a pink spectral envelope. This
is a much better presumption than white. Pieces of music are generally equalized
to pink. Pink means that the spectrum decreases 3dB per an octave increase in
frequency. To take this into account in interpolator quality evaluation, we filter the
spectral images with a pinking filter, whose magnitude is proportional to 1√

w , where
w is the angular frequency of the passband frequency that creates the image. We
shall call this process pinking. The pinking filter is normalized so that the magni-
tude at stopband edges is unity, so the pinking filter depends only on the amount of
oversampling. The frequency responses of the pinking filters are:

-12-12

00

1212

2424

3636

4848

6060

7272

8484

9696

108108

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Pinking filter for unoversampledPinking filter for unoversampled

Pinking filter for 2x-oversampledPinking filter for 2x-oversampled

Pinking filter for 4x-oversampledPinking filter for 4x-oversampled

Pinking filter for 8x-oversampledPinking filter for 8x-oversampled

Pinking filter for 16x-oversampledPinking filter for 16x-oversampled

Pinking filter for 32x-oversampledPinking filter for 32x-oversampled

Figure: Frequency responses of the pinking filters

3. A quality measure 18

A demonstration on pinking:

-144-144

-132-132

-120-120

-108-108

-96-96

-84-84

-72-72

-60-60

-48-48

-36-36

-24-24

-12-12

00

1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Linear (2-point, 1st-order)Linear (2-point, 1st-order)

Pinked, Linear (2-point, 1st-order)Pinked, Linear (2-point, 1st-order)

Figure: Normal and pinked frequency response of linear interpolation (with
no oversampling)

In the demonstration with linear interpolation, pinking has a notable effect - the first
sidelobe top has moved left and heightened sligtly.

Pinking emphasizes the importance of stopband attenuation near frequencies a mul-
tiple of 2π. This has proven to be important as some interpolators may have OK-
looking frequency responses, but sound really bad when there are typical amounts
of low frequencies in the input, compared to testing with white noise. Because pink-
ing would be infinitely strong near 0Hz, we choose to keep increasing the pinking
gain only down to the frequency corresponding to 5Hz in a 44100Hz sampling fre-
quency (before oversampling) input signal, and keep the pinking gain at the same
level from that point to 0Hz.

The effects of the oversampling, pre-emphasis and pinking can be combined. We
shall call the frequency responses obtained this way modified frequency responses.
From a modified frequency response, we shall find the maximum (peak) magnitude
frequency response from the stopbands, convert that to dB, flip the sign, and call this
value the modified SNR (signal-to-noise ratio) and presume that it is a rather good
and comparable measure of the quality of an interpolator.

Interpolating non-oversampled data is out of the scope of this kind of a comparison.
There would be problems with defining the passband-to-stopband transition band.
With the presumption of an ideal oversampling filter, the transition bands of the in-
terpolator are rendered invisible. Also, the passband attenuation is not an issue
because of pre-emphasis, which shows its price at the stopbands.

4. New optimal designs 19

4. New optimal designs

With the modified SNR as a quality measure, it was possible to design the best
possible interpolators of chosen oversampling ratios, orders and numbers of points.

The optimization was done directly on the impulse response coefficients, using Differ-
ential Evolution3, a genetic algorithm developed by Rainer Storn and Kenneth Price.
In short, the algorithm finds (or at least tries to) the global minimum of a cost function
that takes a parameter vector as an argument, which in this case consisted of the
coefficients of the polynomial(s). In the cost function, the six first stopbands in the
modified frequency response were sampled at 33 positions each, and the largest
magnitude was given as the cost which was then minimized by the Differential Evo-
lution algorithm. The normalization for unity gain at DC was also implemented as an
added penalty in the cost function.

Pre-emphasis was excluded from the cost function by accident, but it later turned
out that this was necessary to prevent the interpolators from developing ridiculously
huge transition band magnitude peaks.

Here are the impulse responses of all the potentially useful generated interpolators
for oversampling ratios 2, 4, 8, 16 and 32. Note that there is some air in the decimals
of the coefficients, so some further quantization is OK.

4.1 2-point, 3rd-order optimal

As can be seen from the following, 2-point, 3rd-order optimal interpolators converge
to linear interpolation as the oversampling ratio increases. This is an indication to
use linear interpolation at very high oversampling ratios.

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1.57015627178718420x 3 − 2.35977550974341630x 2+ 0 ≤ x < 1
0.17594740788514596x + 0.80607906469176971
0 1 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 2xOptimal 2x
(2-point, 3rd-order)(2-point, 3rd-order)

Formula, figure: 2-point, 3rd-order optimal 2x impulse response

3http://www.icsi.berkeley.edu/~storn/code.html

4. New optimal designs 20

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1.32598918957298410x 3 − 1.99054787320203810x 2− 0 ≤ x < 1
0.10012219395448523x + 0.88207975731800936
0 1 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 4xOptimal 4x
(2-point, 3rd-order)(2-point, 3rd-order)

Formula, figure: 2-point, 3rd-order optimal 4x impulse response

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.73514591836770027x 3 − 1.10319974084152170x 2− 0 ≤ x < 1
0.51213628865925998x + 0.94001491168487883
0 1 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 8xOptimal 8x
(2-point, 3rd-order)(2-point, 3rd-order)

Formula, figure: 2-point, 3rd-order optimal 8x impulse response

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.38606621963374965x 3 − 0.57923093055631791x 2− 0 ≤ x < 1
0.74617479745643256x + 0.96964782067188493
0 1 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 16xOptimal 16x
(2-point, 3rd-order)(2-point, 3rd-order)

Formula, figure: 2-point, 3rd-order optimal 16x impulse response

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.19775766248673177x 3 − 0.29667081825572522x 2− 0 ≤ x < 1
0.87053863725307623x + 0.98472017575676363
0 1 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 32xOptimal 32x
(2-point, 3rd-order)(2-point, 3rd-order)

Formula, figure: 2-point, 3rd-order optimal 32x impulse response

-144-144
-132-132
-120-120
-108-108

-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Optimal 2x (2-point, 3rd-order)Optimal 2x (2-point, 3rd-order)
Optimal 4x (2-point, 3rd-order)Optimal 4x (2-point, 3rd-order)
Optimal 8x (2-point, 3rd-order)Optimal 8x (2-point, 3rd-order)

Optimal 16x (2-point, 3rd-order)Optimal 16x (2-point, 3rd-order)
Optimal 32x (2-point, 3rd-order)Optimal 32x (2-point, 3rd-order)

Figure: Frequency responses of 2-point, 3rd-order optimal interpolators for
different oversampling ratios

The modified frequency responses will be shown in the comparison section of this
paper.

4. New optimal designs 21

4.2 4-point, 2nd-order optimal

The 4-point, 2nd-order optimal interpolators are a bit strange - the impulse responses,
especially the higher oversampling ratio versions, do not even resemble anything that
we have previously seen. The explanation is that there is a transfer function zero on
the transition band. This causes a large sidelobe that at higher oversampling ratios
exceeds unity in magnitude.

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.21343978756177684x 2 − 0.04782068534965925x+ 0 ≤ x < 1
0.50061662213752656
0.21303593243799016x 2 − 0.88689658749623701x+ 1 ≤ x < 2
0.92770135528027386
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 2xOptimal 2x
(4-point, 2nd-order)(4-point, 2nd-order)

Formula, figure: 4-point, 2nd-order optimal 2x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.22865399531858188x 2 + 0.21144498075197282x+ 0 ≤ x < 1
0.33820365736567115
0.22858390767180370x 2 − 1.01414466618792900x+ 1 ≤ x < 2
1.12014639874555470
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 4xOptimal 4x
(4-point, 2nd-order)(4-point, 2nd-order)

Formula, figure: 4-point, 2nd-order optimal 4x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.24005206207889518x 2 + 0.59257579283164508x+ 0 ≤ x < 1
0.09224718574204172
0.24004281672637814x 2 − 1.17126532964206100x+ 1 ≤ x < 2
1.38828036063664320
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 8xOptimal 8x
(4-point, 2nd-order)(4-point, 2nd-order)

Formula, figure: 4-point, 2nd-order optimal 8x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.24506117865474364x 2 + 1.36361593203840510x− 0 ≤ x < 1
0.41849525763976203
0.24506002360805534x 2 − 1.44144384373471430x+ 1 ≤ x < 2
1.90873339502208310
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 16xOptimal 16x
(4-point, 2nd-order)(4-point, 2nd-order)

Formula, figure: 4-point, 2nd-order optimal 16x impulse response

4. New optimal designs 22

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−0.24755243839713828x 2 + 2.87083485132510450x− 0 ≤ x < 1
1.42170796824052890
0.24755229501840223x 2 − 1.95043794419108290x+ 1 ≤ x < 2
2.91684291662070860
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 32xOptimal 32x
(4-point, 2nd-order)(4-point, 2nd-order)

Formula, figure: 4-point, 2nd-order optimal 32x impulse response

-144-144
-132-132
-120-120
-108-108

-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Optimal 2x (4-point, 2nd-order)Optimal 2x (4-point, 2nd-order)
Optimal 4x (4-point, 2nd-order)Optimal 4x (4-point, 2nd-order)
Optimal 8x (4-point, 2nd-order)Optimal 8x (4-point, 2nd-order)

Optimal 16x (4-point, 2nd-order)Optimal 16x (4-point, 2nd-order)
Optimal 32x (4-point, 2nd-order)Optimal 32x (4-point, 2nd-order)

Figure: Frequency responses of 4-point, 2nd-order optimal interpolators for
different oversampling ratios

4.3 4-point, 3rd-order optimal

Visually, the impulse responses of the 4-point, 3rd-order optimal interpolators resem-
ble that of the B-spline. The frequency response shows groups of zeros bombarding
the stopbands for greater modified frequency response flatness.

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.36030925263849456x 3 − 0.78664888597764893x 2+ 0 ≤ x < 1
0.03573669883299365x + 0.59244492420272321
−0.10174985775982505x3 + 0.70401463131621556x 2− 1 ≤ x < 2
1.60101160971478710x + 1.20220428331406090
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 2xOptimal 2x
(4-point, 3rd-order)(4-point, 3rd-order)

Formula, figure: 4-point, 3rd-order optimal 2x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.42912649274763925x 3 − 0.89223007211175309x 2+ 0 ≤ x < 1
0.05694012453786401x + 0.60304009430474115
−0.13963062613760227x3 + 0.87687351895686727x 2− 1 ≤ x < 2
1.85072890189700660x + 1.31228823423882930
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 4xOptimal 4x
(4-point, 3rd-order)(4-point, 3rd-order)

Formula, figure: 4-point, 3rd-order optimal 4x impulse response

4. New optimal designs 23

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.46789242171187317x 3 − 0.95149675410360302x 2+ 0 ≤ x < 1
0.07280793921972525x + 0.60658368706046584
−0.15551896027602030x3 + 0.94949311590826524x 2− 1 ≤ x < 2
1.95618744839533010x + 1.35919815911169020
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 8xOptimal 8x
(4-point, 3rd-order)(4-point, 3rd-order)

Formula, figure: 4-point, 3rd-order optimal 8x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.48601256046234864x 3 − 0.97894238166068270x 2+ 0 ≤ x < 1
0.07980169577604959x + 0.60844825096346644
−0.16195131297091253x3 + 0.97870442828560433x 2− 1 ≤ x < 2
1.99807048591354810x + 1.37724137476464990
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 16xOptimal 16x
(4-point, 3rd-order)(4-point, 3rd-order)

Formula, figure: 4-point, 3rd-order optimal 16x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.49369595780454456x 3 − 0.99052586766084594x 2+ 0 ≤ x < 1
0.08298544053689563x + 0.60908264223655417
−0.16455902278580614x3 + 0.99049753216621961x 2− 1 ≤ x < 2
2.01496368680360890x + 1.38455689452848450
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 32xOptimal 32x
(4-point, 3rd-order)(4-point, 3rd-order)

Formula, figure: 4-point, 3rd-order optimal 32x impulse response

-192-192
-180-180
-168-168
-156-156
-144-144
-132-132
-120-120
-108-108

-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Optimal 2x (4-point, 3rd-order)Optimal 2x (4-point, 3rd-order)
Optimal 4x (4-point, 3rd-order)Optimal 4x (4-point, 3rd-order)
Optimal 8x (4-point, 3rd-order)Optimal 8x (4-point, 3rd-order)

Optimal 16x (4-point, 3rd-order)Optimal 16x (4-point, 3rd-order)
Optimal 32x (4-point, 3rd-order)Optimal 32x (4-point, 3rd-order)

Figure: Frequency responses of 4-point, 3rd-order optimal interpolators for
different oversampling ratios

4.4 4-point, 4th-order optimal

The 4-point, 4th-order optimal interpolators don’t differ much from the 3rd-order ones.
They are better, though.

4. New optimal designs 24

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.04252164479749607x 4 + 0.29412762852131868x 3− 0 ≤ x < 1
0.75864870418278074x 2 + 0.04442540676862300x+
0.58448510036125145
−0.04289144034653719x4 + 0.13781898240764315x 3+ 1 ≤ x < 2
0.21256821036268256x 2 − 1.16581445347275190x+
1.06598379704160570
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 2xOptimal 2x
(4-point, 4th-order)(4-point, 4th-order)

Formula, figure: 4-point, 4th-order optimal 2x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.00986988334359864x 4 + 0.44922093286355397x 3− 0 ≤ x < 1
0.94057832565094635x 2 + 0.06128937679587994x+
0.61340295990566229
−0.00989340017126506x4 − 0.09642760567543440x 3+ 1 ≤ x < 2
0.81943257721092366x 2 − 1.82814511658458520x+
1.30835018075821670
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 4xOptimal 4x
(4-point, 4th-order)(4-point, 4th-order)

Formula, figure: 4-point, 4th-order optimal 4x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.00255074537015887x 4 + 0.48698871865064902x 3− 0 ≤ x < 1
0.98489647972932193x 2 + 0.06389302461261143x+
0.62095991632974834
−0.00255226912537286x4 − 0.14868053358928229x 3+ 1 ≤ x < 2
0.95410568622888214x 2 − 1.97277963497287720x+
1.35943398999940390
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 8xOptimal 8x
(4-point, 4th-order)(4-point, 4th-order)

Formula, figure: 4-point, 4th-order optimal 8x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.00064264050033187x 4 + 0.49672182806667398x 3− 0 ≤ x < 1
0.99620011474430481x 2 + 0.06443376638262904x+
0.62293049365660191
−0.00064273459469381x4 − 0.16214364417487748x 3+ 1 ≤ x < 2
0.98847675044522398x 2 − 2.00931632449031920x+
1.37216269878963180
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 16xOptimal 16x
(4-point, 4th-order)(4-point, 4th-order)

Formula, figure: 4-point, 4th-order optimal 16x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.00016095224137360x 4 + 0.49917660509564427x 3− 0 ≤ x < 1
0.99904509583176049x 2 + 0.06456923251842608x+
0.62342449465938121
−0.00016095810460478x4 − 0.16553360612350931x 3+ 1 ≤ x < 2
0.99711292321092770x 2 − 2.01847637982642340x+
1.37534629142898650
0 2 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 32xOptimal 32x
(4-point, 4th-order)(4-point, 4th-order)

Formula, figure: 4-point, 4th-order optimal 32x impulse response

4. New optimal designs 25

-192-192
-180-180
-168-168
-156-156
-144-144
-132-132
-120-120
-108-108

-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Optimal 2x (4-point, 4th-order)Optimal 2x (4-point, 4th-order)
Optimal 4x (4-point, 4th-order)Optimal 4x (4-point, 4th-order)
Optimal 8x (4-point, 4th-order)Optimal 8x (4-point, 4th-order)

Optimal 16x (4-point, 4th-order)Optimal 16x (4-point, 4th-order)
Optimal 32x (4-point, 4th-order)Optimal 32x (4-point, 4th-order)

Figure: Frequency responses of 4-point, 4th-order optimal interpolators for
different oversampling ratios

4.5 6-point, 4th-order optimal

The same phenomenon can be seen with the 6-point, 4th-order optimal interpolators
as with the 4-point, 2nd-order ones. The transition band zero makes the impulse
response weird-looking and causes a large sidelobe in the transition band. The
sidelobe height greatly exceeds unity with higher oversampling ratios. This may
cause design problems in the oversampling stage in form of increased stopband
attenuation requirements.

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.03134095684084392x 4 + 0.00255494211547300x 3− 0 ≤ x < 1
0.20486985491012843x 2 − 0.00525580294341423x+
0.42640922432669054
−0.04385804833432710x4 + 0.31182026815653541x 3− 1 ≤ x < 2
0.70564644117967990x 2 + 0.37868437559565432x+
0.30902529029941583
0.01249475765486819x 4 − 0.16695522597587154x 3+ 2 ≤ x < 3
0.83217835730406542x 2 − 1.83761742915820410x+
1.51897639740576910
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 2xOptimal 2x
(6-point, 4th-order)(6-point, 4th-order)

Formula, figure: 6-point, 4th-order optimal 2x impulse response

4. New optimal designs 26

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.02881527997393852x 4 − 0.42059475673758634x 3+ 0 ≤ x < 1
0.56468711069379207x 2 − 0.06119274485321008x+
0.20167941634921072
−0.04250898918476453x4 + 0.51926458031522660x 3− 1 ≤ x < 2
1.85350543411307390x 2 + 2.33580825807694700x−
0.64579641436229407
0.01369173779618459x 4 − 0.22283280665600644x 3+ 2 ≤ x < 3
1.27147464005834010x 2 − 3.09936092833253300x+
2.76228852293285200
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 4xOptimal 4x
(6-point, 4th-order)(6-point, 4th-order)

Formula, figure: 6-point, 4th-order optimal 4x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.03401038103941584x 4 − 1.15976496200057480x 3+ 0 ≤ x < 1
1.87551558979819120x 2 − 0.15190225510786248x−
0.17436452172055789
−0.05090907029392906x4 + 0.93463067895166918x 3− 1 ≤ x < 2
3.92391712129699590x 2 + 5.73320660746477540x−
2.26955357035241170
0.01689861603514873x 4 − 0.32814290420019698x 3+ 2 ≤ x < 3
2.04584149450148180x 2 − 5.25661448354449060x+
4.84834508915762540
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 8xOptimal 8x
(6-point, 4th-order)(6-point, 4th-order)

Formula, figure: 6-point, 4th-order optimal 8x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.03755086455339280x 4 − 2.64598691215356660x 3+ 0 ≤ x < 1
4.53807483241466340x 2 − 0.33649680079382827x−
0.94730014688427577
−0.05631219122315393x4 + 1.70665858343069510x 3− 1 ≤ x < 2
7.98288364772738750x 2 + 12.52871168241192600x−
5.55035312316726960
0.01876132424143207x 4 − 0.49470749109917245x 3+ 2 ≤ x < 3
3.44447036756440590x 2 − 9.37021675593126700x+
8.94785524286246310
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 16xOptimal 16x
(6-point, 4th-order)(6-point, 4th-order)

Formula, figure: 6-point, 4th-order optimal 16x impulse response

4. New optimal designs 27

f (x) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.03957507923965987x 4 − 5.50592307590218160x 3+ 0 ≤ x < 1
9.67889243081689440x 2 − 0.69468212315980082x−
2.44391738331193720
−0.05936083498715066x 4 + 3.15288929279855570x 3− 1 ≤ x < 2
15.73068663442630400x 2 + 25.58633277328986500x−
11.87524595267807600
0.01978575568000696x 4 − 0.79053754554850286x 3+ 2 ≤ x < 3
6.05175140696421730x 2 − 17.17264148794549100x+
16.79403235763479100
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 32xOptimal 32x
(6-point, 4th-order)(6-point, 4th-order)

Formula, figure: 6-point, 4th-order optimal 32x impulse response

-240-240
-228-228
-216-216
-204-204
-192-192
-180-180
-168-168
-156-156
-144-144
-132-132
-120-120
-108-108

-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212
2424

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Optimal 2x (6-point, 4th-order)Optimal 2x (6-point, 4th-order)
Optimal 4x (6-point, 4th-order)Optimal 4x (6-point, 4th-order)
Optimal 8x (6-point, 4th-order)Optimal 8x (6-point, 4th-order)

Optimal 16x (6-point, 4th-order)Optimal 16x (6-point, 4th-order)
Optimal 32x (6-point, 4th-order)Optimal 32x (6-point, 4th-order)

Figure: Frequency responses of 6-point, 4th-order optimal interpolators for
different oversampling ratios

4.6 6-point, 5th-order optimal

The 6-point, 5th-order optimal interpolator impulse responses resemble that of the
B-spline, and the frequency responses look nice - lots of zeros at where they are
mostly needed.

4. New optimal designs 28

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.04317950185225609x5 + 0.14640674192652170x 4− 0 ≤ x < 1
0.02014846731685776x 3 − 0.32675071713952775x 2−
0.00127577239632662x + 0.48217702203158502
0.01802814255926417x 5 − 0.19234043023690772x 4+ 1 ≤ x < 2
0.74995484587342742x 3 − 1.22477236472789920x 2+
0.53534756396439365x + 0.35095903476754237
−0.00152170021558204x5 + 0.03768876199398620x 4− 2 ≤ x < 3
0.31577407091450355x 3 + 1.22220278720010690x 2−
2.26168360510917840x + 1.62814578813495040
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 2xOptimal 2x
(6-point, 5th-order)(6-point, 5th-order)

Formula, figure: 6-point, 5th-order optimal 2x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.06607747864416924x5 + 0.20620318519804220x 4− 0 ≤ x < 1
0.04512026308730401x 3 − 0.36229943140977111x 2−
0.00256790184606694x + 0.50164509338655083
0.03255079211953620x 5 − 0.30560854964737405x 4+ 1 ≤ x < 2
1.08365113099941970x 3 − 1.66940481896969310x 2+
0.78336433172501685x + 0.30718330223223800
−0.00628989632244913x5 + 0.09909173357642603x 4− 2 ≤ x < 3
0.62765808573554227x 3 + 1.99766476840488070x 2−
3.19403437421534920x + 2.05191571792256240
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 4xOptimal 4x
(6-point, 5th-order)(6-point, 5th-order)

Formula, figure: 6-point, 5th-order optimal 4x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.07517133281176167x5 + 0.22942797169644802x 4− 0 ≤ x < 1
0.06070462616102962x 3 − 0.36434084624989699x 2−
0.00368143670114908x + 0.50513183702821474
0.03751837438141215x 5 − 0.34363487882262922x 4+ 1 ≤ x < 2
1.19588167464050650x 3 − 1.82581238657617080x 2+
0.88385964850687193x + 0.28281884957695946
−0.00747588873055296x5 + 0.11419603882898799x 4− 2 ≤ x < 3
0.70370361187427199x 3 + 2.18592382088982260x 2−
3.42137079071284810x + 2.15756386503245070
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 8xOptimal 8x
(6-point, 5th-order)(6-point, 5th-order)

Formula, figure: 6-point, 5th-order optimal 8x impulse response

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.07990500783668089x5 + 0.24139298776307896x 4− 0 ≤ x < 1
0.06616250180411522x 3 − 0.36990908725555449x 2−
0.00387117789818541x + 0.50819303579369868
0.03994519162531633x 5 − 0.36203450650610985x 4+ 1 ≤ x < 2
1.24834464824612510x 3 − 1.89281840112089440x 2+
0.91870010875159547x + 0.27758734130911511
−0.00798609327859495x5 + 0.12064126711558003x 4− 2 ≤ x < 3
0.73559668875725392x 3 + 2.26228244623301580x 2−
3.50786533926449100x + 2.19284545406407450
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 16xOptimal 16x
(6-point, 5th-order)(6-point, 5th-order)

Formula, figure: 6-point, 5th-order optimal 16x impulse response

5. Comparison 29

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.08349799235675044x5 + 0.25041444762720882x 4− 0 ≤ x < 1
0.04095676092513167x 3 − 0.42682321682847008x 2+
0.00010896283126635x + 0.52558916128536759
0.04174912841630993x 5 − 0.37562266426589430x 4+ 1 ≤ x < 2
1.27215033630638800x 3 − 1.86228986389877100x 2+
0.80946953063234006x + 0.33937904183610190
−0.00834987866042734x5 + 0.12520821766375972x 4− 2 ≤ x < 3
0.75510203509083995x 3 + 2.28912105276248390x 2−
3.48774662195185850x + 2.13606003964474490
0 3 ≤ x
f (−x) otherwise.

f(x)f(x)

Optimal 32xOptimal 32x
(6-point, 5th-order)(6-point, 5th-order)

Formula, figure: 6-point, 5th-order optimal 32x impulse response

-288-288
-276-276
-264-264
-252-252
-240-240
-228-228
-216-216
-204-204
-192-192
-180-180
-168-168
-156-156
-144-144
-132-132
-120-120
-108-108

-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212
2424

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

Optimal 2x (6-point, 5th-order)Optimal 2x (6-point, 5th-order)
Optimal 4x (6-point, 5th-order)Optimal 4x (6-point, 5th-order)
Optimal 8x (6-point, 5th-order)Optimal 8x (6-point, 5th-order)

Optimal 16x (6-point, 5th-order)Optimal 16x (6-point, 5th-order)
Optimal 32x (6-point, 5th-order)Optimal 32x (6-point, 5th-order)

Figure: Frequency responses of 6-point, 5th-order optimal interpolators for
different oversampling ratios

5. Comparison

This comparison evaluates the modified SNR for each presented interpolator, at dif-
ferent oversampling ratios. The optimal interpolators are only evaluated at their spe-
cific oversampling ratios.

5.1 Linear

-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-19.1 dB-19.1 dB

2x-oversampled, pinked, pre-emphasized, Linear (2-point, 1st-order)2x-oversampled, pinked, pre-emphasized, Linear (2-point, 1st-order)

-33.8 dB-33.8 dB

4x-oversampled, pinked, pre-emphasized, Linear (2-point, 1st-order)4x-oversampled, pinked, pre-emphasized, Linear (2-point, 1st-order)

-47.0 dB-47.0 dB

8x-oversampled, pinked, pre-emphasized, Linear (2-point, 1st-order)8x-oversampled, pinked, pre-emphasized, Linear (2-point, 1st-order)

-59.7 dB-59.7 dB

16x-oversampled, pinked, pre-emphasized, Linear (2-point, 1st-order)16x-oversampled, pinked, pre-emphasized, Linear (2-point, 1st-order)

-72.0 dB-72.0 dB

32x-oversampled, pinked, pre-emphasized, Linear (2-point, 1st-order)32x-oversampled, pinked, pre-emphasized, Linear (2-point, 1st-order)

Figure: Modified frequency responses of the linear interpolator

5. Comparison 30

Linear interpolation gives a modified SNR of 19.1dB for 2x-, 33.8dB for 4x-, 47.0dB for 8x-, 59.7dB
for 16x- and 72.0dB for 32x-oversampled input.

5.2 B-spline

-156-156
-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-38.2 dB-38.2 dB

2x-oversampled, pinked, pre-emphasized, B-spline (4-point, 3rd-order)2x-oversampled, pinked, pre-emphasized, B-spline (4-point, 3rd-order)

-67.6 dB-67.6 dB

4x-oversampled, pinked, pre-emphasized, B-spline (4-point, 3rd-order)4x-oversampled, pinked, pre-emphasized, B-spline (4-point, 3rd-order)

-94.1 dB-94.1 dB

8x-oversampled, pinked, pre-emphasized, B-spline (4-point, 3rd-order)8x-oversampled, pinked, pre-emphasized, B-spline (4-point, 3rd-order)

-119.3 dB-119.3 dB

16x-oversampled, pinked, pre-emphasized, B-spline (4-point, 3rd-order)16x-oversampled, pinked, pre-emphasized, B-spline (4-point, 3rd-order)

-143.9 dB-143.9 dB

32x-oversampled, pinked, pre-emphasized, B-spline (4-point, 3rd-order)32x-oversampled, pinked, pre-emphasized, B-spline (4-point, 3rd-order)

Figure: Modified frequency responses of the 3rd-order B-spline

3rd-order B-spline gives a modified SNR of 38.2dB for 2x-, 67.6dB for 4x-, 94.1dB for 8x-, 119.3dB
for 16x- and 143.9dB for 32x-oversampled input.

-228-228
-216-216
-204-204
-192-192
-180-180
-168-168
-156-156
-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-57.3 dB-57.3 dB

2x-oversampled, pinked, pre-emphasized, B-spline (6-point, 5th-order)2x-oversampled, pinked, pre-emphasized, B-spline (6-point, 5th-order)

-101.4 dB-101.4 dB

4x-oversampled, pinked, pre-emphasized, B-spline (6-point, 5th-order)4x-oversampled, pinked, pre-emphasized, B-spline (6-point, 5th-order)

-141.1 dB-141.1 dB

8x-oversampled, pinked, pre-emphasized, B-spline (6-point, 5th-order)8x-oversampled, pinked, pre-emphasized, B-spline (6-point, 5th-order)

-179.0 dB-179.0 dB

16x-oversampled, pinked, pre-emphasized, B-spline (6-point, 5th-order)16x-oversampled, pinked, pre-emphasized, B-spline (6-point, 5th-order)

-215.9 dB-215.9 dB

32x-oversampled, pinked, pre-emphasized, B-spline (6-point, 5th-order)32x-oversampled, pinked, pre-emphasized, B-spline (6-point, 5th-order)

Figure: Modified frequency responses of the 5th-order B-spline

5th-order B-spline gives a modified SNR of 57.3dB for 2x-, 101.4dB for 4x-, 141.1dB for 8x-, 179.0dB
for 16x- and 215.9dB for 32x-oversampled input.

5. Comparison 31

5.3 Lagrange

-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-27.7 dB-27.7 dB

2x-oversampled, pinked, pre-emphasized, Lagrange (4-point, 3rd-order)2x-oversampled, pinked, pre-emphasized, Lagrange (4-point, 3rd-order)

-52.8 dB-52.8 dB

4x-oversampled, pinked, pre-emphasized, Lagrange (4-point, 3rd-order)4x-oversampled, pinked, pre-emphasized, Lagrange (4-point, 3rd-order)

-77.7 dB-77.7 dB

8x-oversampled, pinked, pre-emphasized, Lagrange (4-point, 3rd-order)8x-oversampled, pinked, pre-emphasized, Lagrange (4-point, 3rd-order)

-102.2 dB-102.2 dB

16x-oversampled, pinked, pre-emphasized, Lagrange (4-point, 3rd-order)16x-oversampled, pinked, pre-emphasized, Lagrange (4-point, 3rd-order)

-126.6 dB-126.6 dB

32x-oversampled, pinked, pre-emphasized, Lagrange (4-point, 3rd-order)32x-oversampled, pinked, pre-emphasized, Lagrange (4-point, 3rd-order)

Figure: Modified frequency responses of the 3rd-order Lagrange

3rd-order Lagrange gives a modified SNR of 27.7dB for 2x-, 52.8dB for 4x-, 77.7dB for 8x-, 102.2dB
for 16x- and 126.6dB for 32x-oversampled input.

-192-192
-180-180
-168-168
-156-156
-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-35.2 dB-35.2 dB

2x-oversampled, pinked, pre-emphasized, Lagrange (6-point, 5th-order)2x-oversampled, pinked, pre-emphasized, Lagrange (6-point, 5th-order)

-70.9 dB-70.9 dB

4x-oversampled, pinked, pre-emphasized, Lagrange (6-point, 5th-order)4x-oversampled, pinked, pre-emphasized, Lagrange (6-point, 5th-order)

-107.5 dB-107.5 dB

8x-oversampled, pinked, pre-emphasized, Lagrange (6-point, 5th-order)8x-oversampled, pinked, pre-emphasized, Lagrange (6-point, 5th-order)

-144.1 dB-144.1 dB

16x-oversampled, pinked, pre-emphasized, Lagrange (6-point, 5th-order)16x-oversampled, pinked, pre-emphasized, Lagrange (6-point, 5th-order)

-180.5 dB-180.5 dB

32x-oversampled, pinked, pre-emphasized, Lagrange (6-point, 5th-order)32x-oversampled, pinked, pre-emphasized, Lagrange (6-point, 5th-order)

Figure: Modified frequency responses of the 5th-order Lagrange

5th-order Lagrange gives a modified SNR of 35.2dB for 2x-, 70.9dB for 4x-, 107.5dB for 8x-, 144.1dB
for 16x- and 180.5dB for 32x-oversampled input.

5.4 Hermite

-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-23.5 dB-23.5 dB

2x-oversampled, pinked, pre-emphasized, Hermite (4-point, 3rd-order)2x-oversampled, pinked, pre-emphasized, Hermite (4-point, 3rd-order)

-44.2 dB-44.2 dB

4x-oversampled, pinked, pre-emphasized, Hermite (4-point, 3rd-order)4x-oversampled, pinked, pre-emphasized, Hermite (4-point, 3rd-order)

-64.0 dB-64.0 dB

8x-oversampled, pinked, pre-emphasized, Hermite (4-point, 3rd-order)8x-oversampled, pinked, pre-emphasized, Hermite (4-point, 3rd-order)

-83.1 dB-83.1 dB

16x-oversampled, pinked, pre-emphasized, Hermite (4-point, 3rd-order)16x-oversampled, pinked, pre-emphasized, Hermite (4-point, 3rd-order)

-101.8 dB-101.8 dB

32x-oversampled, pinked, pre-emphasized, Hermite (4-point, 3rd-order)32x-oversampled, pinked, pre-emphasized, Hermite (4-point, 3rd-order)

Figure: Modified frequency responses of the 4-point, 3rd-order Hermite

4-point, 3rd-order Hermite gives a modified SNR of 23.5dB for 2x-, 44.2dB for 4x-, 64.0dB for 8x-,
83.1dB for 16x- and 101.8dB for 32x-oversampled input.

5. Comparison 32

-156-156
-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-30.5 dB-30.5 dB

2x-oversampled, pinked, pre-emphasized, Hermite (6-point, 3rd-order)2x-oversampled, pinked, pre-emphasized, Hermite (6-point, 3rd-order)

-60.2 dB-60.2 dB

4x-oversampled, pinked, pre-emphasized, Hermite (6-point, 3rd-order)4x-oversampled, pinked, pre-emphasized, Hermite (6-point, 3rd-order)

-89.1 dB-89.1 dB

8x-oversampled, pinked, pre-emphasized, Hermite (6-point, 3rd-order)8x-oversampled, pinked, pre-emphasized, Hermite (6-point, 3rd-order)

-116.3 dB-116.3 dB

16x-oversampled, pinked, pre-emphasized, Hermite (6-point, 3rd-order)16x-oversampled, pinked, pre-emphasized, Hermite (6-point, 3rd-order)

-142.3 dB-142.3 dB

32x-oversampled, pinked, pre-emphasized, Hermite (6-point, 3rd-order)32x-oversampled, pinked, pre-emphasized, Hermite (6-point, 3rd-order)

Figure: Modified frequency responses of the 6-point, 3rd-order Hermite

6-point, 3rd-order Hermite gives a modified SNR of 30.5dB for 2x-, 60.2dB for 4x-, 89.1dB for 8x-,
116.3dB for 16x- and 142.3dB for 32x-oversampled input.

-168-168
-156-156
-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-31.0 dB-31.0 dB

2x-oversampled, pinked, pre-emphasized, Hermite (6-point, 5th-order)2x-oversampled, pinked, pre-emphasized, Hermite (6-point, 5th-order)

-62.3 dB-62.3 dB

4x-oversampled, pinked, pre-emphasized, Hermite (6-point, 5th-order)4x-oversampled, pinked, pre-emphasized, Hermite (6-point, 5th-order)

-93.7 dB-93.7 dB

8x-oversampled, pinked, pre-emphasized, Hermite (6-point, 5th-order)8x-oversampled, pinked, pre-emphasized, Hermite (6-point, 5th-order)

-124.7 dB-124.7 dB

16x-oversampled, pinked, pre-emphasized, Hermite (6-point, 5th-order)16x-oversampled, pinked, pre-emphasized, Hermite (6-point, 5th-order)

-155.4 dB-155.4 dB

32x-oversampled, pinked, pre-emphasized, Hermite (6-point, 5th-order)32x-oversampled, pinked, pre-emphasized, Hermite (6-point, 5th-order)

Figure: Modified frequency responses of the 6-point, 5th-order Hermite

6-point, 5th-order Hermite gives a modified SNR of 31.0dB for 2x-, 62.3dB for 4x-, 93.7dB for 8x-,
124.7dB for 16x- and 155.4dB for 32x-oversampled input.

5.5 2nd-order-osculating

-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-22.1 dB-22.1 dB

2x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (4-point, 5th-order)2x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (4-point, 5th-order)

-41.9 dB-41.9 dB

4x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (4-point, 5th-order)4x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (4-point, 5th-order)

-61.1 dB-61.1 dB

8x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (4-point, 5th-order)8x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (4-point, 5th-order)

-79.9 dB-79.9 dB

16x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (4-point, 5th-order)16x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (4-point, 5th-order)

-98.3 dB-98.3 dB

32x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (4-point, 5th-order)32x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (4-point, 5th-order)

Figure: Modified frequency responses of the 4-point, 5th-order 2nd-order-osculating

4-point, 5th-order 2nd-order-osculating gives a modified SNR of 22.1dB for 2x-, 41.9dB for 4x-, 61.1dB
for 8x-, 79.9dB for 16x- and 98.3dB for 32x-oversampled input.

5. Comparison 33

-168-168
-156-156
-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-29.9 dB-29.9 dB

2x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (6-point, 5th-order)2x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (6-point, 5th-order)

-60.4 dB-60.4 dB

4x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (6-point, 5th-order)4x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (6-point, 5th-order)

-91.4 dB-91.4 dB

8x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (6-point, 5th-order)8x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (6-point, 5th-order)

-122.1 dB-122.1 dB

16x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (6-point, 5th-order)16x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (6-point, 5th-order)

-152.6 dB-152.6 dB

32x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (6-point, 5th-order)32x-oversampled, pinked, pre-emphasized, 2nd-order-osculating (6-point, 5th-order)

Figure: Modified frequency responses of the 6-point, 5th-order 2nd-order-osculating

6-point, 5th-order 2nd-order-osculating gives a modified SNR of 29.9dB for 2x-, 60.4dB for 4x-, 91.4dB
for 8x-, 122.1dB for 16x- and 152.6dB for 32x-oversampled input.

5.6 Watte tri-linear

-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-27.9 dB-27.9 dB

2x-oversampled, pinked, pre-emphasized, Watte tri-linear (4-point, 2nd-order)2x-oversampled, pinked, pre-emphasized, Watte tri-linear (4-point, 2nd-order)

-34.9 dB-34.9 dB

4x-oversampled, pinked, pre-emphasized, Watte tri-linear (4-point, 2nd-order)4x-oversampled, pinked, pre-emphasized, Watte tri-linear (4-point, 2nd-order)

-46.8 dB-46.8 dB

8x-oversampled, pinked, pre-emphasized, Watte tri-linear (4-point, 2nd-order)8x-oversampled, pinked, pre-emphasized, Watte tri-linear (4-point, 2nd-order)

-59.3 dB-59.3 dB

16x-oversampled, pinked, pre-emphasized, Watte tri-linear (4-point, 2nd-order)16x-oversampled, pinked, pre-emphasized, Watte tri-linear (4-point, 2nd-order)

-71.8 dB-71.8 dB

32x-oversampled, pinked, pre-emphasized, Watte tri-linear (4-point, 2nd-order)32x-oversampled, pinked, pre-emphasized, Watte tri-linear (4-point, 2nd-order)

Figure: Modified frequency responses of the Watte tri-linear

Watte tri-linear gives a modified SNR of 27.9dB for 2x-, 34.9dB for 4x-, 46.8dB for 8x-, 59.3dB for 16x-
and 71.8dB for 32x-oversampled input.

5.7 Parabolic 2x

-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-28.6 dB-28.6 dB

2x-oversampled, pinked, pre-emphasized, Parabolic 2x (4-point, 2nd-order)2x-oversampled, pinked, pre-emphasized, Parabolic 2x (4-point, 2nd-order)

-50.7 dB-50.7 dB

4x-oversampled, pinked, pre-emphasized, Parabolic 2x (4-point, 2nd-order)4x-oversampled, pinked, pre-emphasized, Parabolic 2x (4-point, 2nd-order)

-70.6 dB-70.6 dB

8x-oversampled, pinked, pre-emphasized, Parabolic 2x (4-point, 2nd-order)8x-oversampled, pinked, pre-emphasized, Parabolic 2x (4-point, 2nd-order)

-89.5 dB-89.5 dB

16x-oversampled, pinked, pre-emphasized, Parabolic 2x (4-point, 2nd-order)16x-oversampled, pinked, pre-emphasized, Parabolic 2x (4-point, 2nd-order)

-108.0 dB-108.0 dB

32x-oversampled, pinked, pre-emphasized, Parabolic 2x (4-point, 2nd-order)32x-oversampled, pinked, pre-emphasized, Parabolic 2x (4-point, 2nd-order)

Figure: Modified frequency responses of the parabolic 2x

Parabolic 2x gives a modified SNR of 28.6dB for 2x-, 50.7dB for 4x-, 70.6dB for 8x-, 89.5dB for 16x-
and 108.0dB for 32x-oversampled input.

5. Comparison 34

5.8 Optimal

-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212
2424

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-28.0 dB-28.0 dB

2x-oversampled, pinked, pre-emphasized, Optimal 2x (2-point, 3rd-order)2x-oversampled, pinked, pre-emphasized, Optimal 2x (2-point, 3rd-order)

-39.1 dB-39.1 dB

4x-oversampled, pinked, pre-emphasized, Optimal 4x (2-point, 3rd-order)4x-oversampled, pinked, pre-emphasized, Optimal 4x (2-point, 3rd-order)

-49.7 dB-49.7 dB

8x-oversampled, pinked, pre-emphasized, Optimal 8x (2-point, 3rd-order)8x-oversampled, pinked, pre-emphasized, Optimal 8x (2-point, 3rd-order)

-61.0 dB-61.0 dB

16x-oversampled, pinked, pre-emphasized, Optimal 16x (2-point, 3rd-order)16x-oversampled, pinked, pre-emphasized, Optimal 16x (2-point, 3rd-order)

-72.7 dB-72.7 dB

32x-oversampled, pinked, pre-emphasized, Optimal 32x (2-point, 3rd-order)32x-oversampled, pinked, pre-emphasized, Optimal 32x (2-point, 3rd-order)

Figure: Modified frequency responses of the 2-point, 3rd-order optimal interpolators

2-point, 3rd-order optimal interpolators give modified SNRs of 28.0dB for 2x-, 39.1dB for 4x-, 49.7dB
for 8x-, 61.0dB for 16x- and 72.7dB for 32x-oversampled input.

-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-45.1 dB-45.1 dB

2x-oversampled, pinked, pre-emphasized, Optimal 2x (4-point, 2nd-order)2x-oversampled, pinked, pre-emphasized, Optimal 2x (4-point, 2nd-order)

-64.6 dB-64.6 dB

4x-oversampled, pinked, pre-emphasized, Optimal 4x (4-point, 2nd-order)4x-oversampled, pinked, pre-emphasized, Optimal 4x (4-point, 2nd-order)

-83.5 dB-83.5 dB

8x-oversampled, pinked, pre-emphasized, Optimal 8x (4-point, 2nd-order)8x-oversampled, pinked, pre-emphasized, Optimal 8x (4-point, 2nd-order)

-101.9 dB-101.9 dB

16x-oversampled, pinked, pre-emphasized, Optimal 16x (4-point, 2nd-order)16x-oversampled, pinked, pre-emphasized, Optimal 16x (4-point, 2nd-order)

-120.2 dB-120.2 dB

32x-oversampled, pinked, pre-emphasized, Optimal 32x (4-point, 2nd-order)32x-oversampled, pinked, pre-emphasized, Optimal 32x (4-point, 2nd-order)

Figure: Modified frequency responses of the 4-point, 2nd-order optimal interpolators

4-point, 2nd-order optimal interpolators give modified SNRs of 45.1dB for 2x-, 64.6dB for 4x-, 83.5dB
for 8x-, 101.9dB for 16x- and 120.2dB for 32x-oversampled input.

-180-180
-168-168
-156-156
-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-65.9 dB-65.9 dB

2x-oversampled, pinked, pre-emphasized, Optimal 2x (4-point, 3rd-order)2x-oversampled, pinked, pre-emphasized, Optimal 2x (4-point, 3rd-order)

-89.0 dB-89.0 dB

4x-oversampled, pinked, pre-emphasized, Optimal 4x (4-point, 3rd-order)4x-oversampled, pinked, pre-emphasized, Optimal 4x (4-point, 3rd-order)

-112.9 dB-112.9 dB

8x-oversampled, pinked, pre-emphasized, Optimal 8x (4-point, 3rd-order)8x-oversampled, pinked, pre-emphasized, Optimal 8x (4-point, 3rd-order)

-136.9 dB-136.9 dB

16x-oversampled, pinked, pre-emphasized, Optimal 16x (4-point, 3rd-order)16x-oversampled, pinked, pre-emphasized, Optimal 16x (4-point, 3rd-order)

-161.0 dB-161.0 dB

32x-oversampled, pinked, pre-emphasized, Optimal 32x (4-point, 3rd-order)32x-oversampled, pinked, pre-emphasized, Optimal 32x (4-point, 3rd-order)

Figure: Modified frequency responses of the 4-point, 3rd-order optimal interpolators

4-point, 3rd-order optimal interpolators give modified SNRs of 65.9dB for 2x-, 89.0dB for 4x-, 112.9dB
for 8x-, 136.9dB for 16x- and 161.0dB for 32x-oversampled input.

5. Comparison 35

-192-192
-180-180
-168-168
-156-156
-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-69.8 dB-69.8 dB

2x-oversampled, pinked, pre-emphasized, Optimal 2x (4-point, 4th-order)2x-oversampled, pinked, pre-emphasized, Optimal 2x (4-point, 4th-order)

-101.1 dB-101.1 dB

4x-oversampled, pinked, pre-emphasized, Optimal 4x (4-point, 4th-order)4x-oversampled, pinked, pre-emphasized, Optimal 4x (4-point, 4th-order)

-126.4 dB-126.4 dB

8x-oversampled, pinked, pre-emphasized, Optimal 8x (4-point, 4th-order)8x-oversampled, pinked, pre-emphasized, Optimal 8x (4-point, 4th-order)

-150.7 dB-150.7 dB

16x-oversampled, pinked, pre-emphasized, Optimal 16x (4-point, 4th-order)16x-oversampled, pinked, pre-emphasized, Optimal 16x (4-point, 4th-order)

-174.9 dB-174.9 dB

32x-oversampled, pinked, pre-emphasized, Optimal 32x (4-point, 4th-order)32x-oversampled, pinked, pre-emphasized, Optimal 32x (4-point, 4th-order)

Figure: Modified frequency responses of the 4-point, 4th-order optimal interpolators

4-point, 4th-order optimal interpolators give modified SNRs of 69.8dB for 2x-, 101.1dB for 4x-, 126.4dB
for 8x-, 150.7dB for 16x- and 174.9dB for 32x-oversampled input.

-228-228
-216-216
-204-204
-192-192
-180-180
-168-168
-156-156
-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-89.8 dB-89.8 dB

2x-oversampled, pinked, pre-emphasized, Optimal 2x (6-point, 4th-order)2x-oversampled, pinked, pre-emphasized, Optimal 2x (6-point, 4th-order)

-120.6 dB-120.6 dB

4x-oversampled, pinked, pre-emphasized, Optimal 4x (6-point, 4th-order)4x-oversampled, pinked, pre-emphasized, Optimal 4x (6-point, 4th-order)

-151.2 dB-151.2 dB

8x-oversampled, pinked, pre-emphasized, Optimal 8x (6-point, 4th-order)8x-oversampled, pinked, pre-emphasized, Optimal 8x (6-point, 4th-order)

-181.6 dB-181.6 dB

16x-oversampled, pinked, pre-emphasized, Optimal 16x (6-point, 4th-order)16x-oversampled, pinked, pre-emphasized, Optimal 16x (6-point, 4th-order)

-212.0 dB-212.0 dB

32x-oversampled, pinked, pre-emphasized, Optimal 32x (6-point, 4th-order)32x-oversampled, pinked, pre-emphasized, Optimal 32x (6-point, 4th-order)

Figure: Modified frequency responses of the 6-point, 4th-order optimal interpolators

6-point, 4th-order optimal interpolators give modified SNRs of 89.8dB for 2x-, 120.6dB for 4x-, 151.2dB
for 8x-, 181.6dB for 16x- and 212.0dB for 32x-oversampled input.

-276-276
-264-264
-252-252
-240-240
-228-228
-216-216
-204-204
-192-192
-180-180
-168-168
-156-156
-144-144
-132-132
-120-120
-108-108
-96-96
-84-84
-72-72
-60-60
-48-48
-36-36
-24-24
-12-12

00
1212

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
)

Angular frequency (pi)Angular frequency (pi)

-111.4 dB-111.4 dB

2x-oversampled, pinked, pre-emphasized, Optimal 2x (6-point, 5th-order)2x-oversampled, pinked, pre-emphasized, Optimal 2x (6-point, 5th-order)

-149.3 dB-149.3 dB

4x-oversampled, pinked, pre-emphasized, Optimal 4x (6-point, 5th-order)4x-oversampled, pinked, pre-emphasized, Optimal 4x (6-point, 5th-order)

-185.4 dB-185.4 dB

8x-oversampled, pinked, pre-emphasized, Optimal 8x (6-point, 5th-order)8x-oversampled, pinked, pre-emphasized, Optimal 8x (6-point, 5th-order)

-221.5 dB-221.5 dB

16x-oversampled, pinked, pre-emphasized, Optimal 16x (6-point, 5th-order)16x-oversampled, pinked, pre-emphasized, Optimal 16x (6-point, 5th-order)

-257.8 dB-257.8 dB

32x-oversampled, pinked, pre-emphasized, Optimal 32x (6-point, 5th-order)32x-oversampled, pinked, pre-emphasized, Optimal 32x (6-point, 5th-order)

Figure: Modified frequency responses of the 6-point, 5th-order optimal interpolators

6. Implementation 36

6-point, 5th-order optimal interpolators give modified SNRs of 111.4dB for 2x-, 149.3dB for 4x-,
185.4dB for 8x-, 221.5dB for 16x- and 257.8dB for 32x-oversampled input.

A summary of the comparison will be given after evaluating the implementation com-
plexity of each interpolator.

6. Implementation

The impulse response form of an interpolator is not the one used in actual code. The
interpolation routine can be simplified to the problem of interpolating the samples
y[x] in range x = 0..1. The position to interpolate is given in variable x and the nearby
samplepoints are provided, say y[−1], y[0], y[1] and y[2] for a 4-point interpolator. The
interpolation can be described as convolution with the interpolator impulse response
– here’s a demonstration on cubic Hermite.

x

x

x

x

1) 2) 3)

Figure: 1) Shifted cubic Hermite impulse responses form the basis functions,
fi(x) (the non-grayed, non-dashed sections), 2) Basis functions scaled by
the samplepoints y[−1] = 1.75, y[0] = 1, y[1] = 0.75, y[2] = −1.5, 3) Sum of the
scaled basis functions becomes an interpolation section g(x)

The basis functions, fi(x), are the impulse response sections shifted in time to range
x = 0..1. They are scaled by the samplepoints and summed to form the the interpola-
tion function section g(x), from which the value at a chosen x is taken.

The following formulations for the basis functions fi(x) for cubic Hermite were solved
by substituting x with x − i in the impulse response f (x).

f−1(x) = −1
2x + x2 − 1

2x3

f0(x) = 1 − 5
2x2 + 3

2x3

f1(x) = 1
2x + 2x2 − 3

2x3

f2(x) = −1
2x2 + 1

2x3

Formula: 4-point, 3rd-order Hermite basis functions

These basis functions are next scaled by y[−1], y[0], y[1] and y[2], respectively, and
summed to form g(x), which is the interpolation function in range x = 0..1.

6. Implementation 37

g(x) = y[−1] f−1(x) + y[0] f0(x) + y[1] f1(x) + y[2] f2(x)

= y[−1] (−1
2x +x2 − 1

2x3) +
y[0] (1 −5

2x2 + 3
2x3) +

y[1] (1
2x +2x2 − 3

2x3) +
y[2] (−1

2x2 + 1
2x3)

= (y[0]) +
x (−1

2y[−1] +1
2y[1]) +

x2 (y[−1] −5
2y[0] +2y[1] −1

2y[2]) +
x3 (− 1

2y[−1] +3
2y[0] −3

2y[1] +1
2y[2])

A matrix representation simplifies the notation.

g(x) =
(
1 x x2 x3

)
⎛
⎜⎜⎝

0 1 0 0
− 1

2 0 1
2 0

1 − 5
2 2 − 1

2
− 1

2
3
2 − 3

2
1
2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y[−1]
y[0]
y[1]
y[2]

⎞
⎟⎟⎠

Formula: The x-form implementation of cubic Hermite interpolation

In the coefficient matrix, if there are numbers on a row that have the same absolute
value, the corresponding multiplications can be combined, increasing the speed of
the interpolation routine. The symmetry of the impulse responses can be exploited
to limit the number of required multiplications to half the number of matrix elements,
or below if we are lucky, by a substitution x = 1

2 + z, which shifts the symmetry axis
to z = 0. This trick may not be effective for matrices that already have many pairable
elements, zeros or minus or plus ones that need not be multiplied. Nevertheless, we
shall demonstrate this on the cubic Hermite.

g(x) =
(
1 z z2 z3

)
⎛
⎜⎜⎝

− 1
16

9
16

9
16 − 1

16
1
8 − 11

8
11
8 − 1

8
1
4 − 1

4 − 1
4

1
4

− 1
2

3
2 − 3

2
1
2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

y[−1]
y[0]
y[1]
y[2]

⎞
⎟⎟⎠ , z = x − 1

2

Formula: The z-form implementation of cubic Hermite interpolation

We shall call these implementations the x- and the z-form, and their coefficient ma-
trices X and Z, respectively. With cubic Hermite, the x-form requires 6 multiplications
to calculate the polynomial g(x) coefficients, and the z-form requires 7. So, for cubic
Hermite, it is better to use the x-form given earlier.

After the coefficients have been computed, the interpolation polynomial g(x) must be
evaluated. Horner’s rule can be used to reduce multiplications, for example:

6. Implementation 38

c3x3 + c2x2 + c1x + c0 = ((c3x + c2)x + c1)x + c0

Formula: Horner’s rule

So evaluating a polynomial requires the same number of multiplications its order is.
Summing this number with the number of multiplications required by the cheaper
matrix-vector multiplication (x-form for cubic Hermite) gives the total number of mul-
tiplications required (9 for cubic Hermite). It should be noted, however, that on some
platforms, using Horner’s rule is not beneficial, so feel free to modify the source
codes given later.

Next we shall try finding the best implementation form for each interpolator.

To choose between the x- and the z-form, we find out the number of operations in
both. First we find out which needs more multiplications. If multiplications are expen-
sive on the target platform, then that is what matters. However, if multiplications are
as cheap as addition and subtraction operations, then the total number of operations
counts. Optimized C language source code for the x- and z-form algorithms is given
in the following, and the total number of operations is counted from each.

Looking at the matrices X and Z, some of the coefficients can be paired. This is
marked with blue color, and two such coefficients require only one multiplication.
Usually, the pair can be found from the same row, but sometimes on the same
column. If more coefficients can be combined into larger groups that reduce mul-
tiplications, they are marked with red color. The Z-matrices have all rows either
symmetrical or antisymmetrical, so pairing is guaranteed.

Zeros and plus and minus ones require no multiplications. If a coefficient is otherwise
trivial, for example 1

8 , the multiplication might be possible to perform with a binary
shift operation. In this paper, however, a floating point platform with no such scaling
command is presumed and coefficients like that are treated as usual.

6.1 Linear

Linear interpolation is best done simply as:

g(x) = y[0] + x(y[1] − y[0])

Formula: Linear interpolation implementation

requiring total 1 multiplication.

// Linear
return y[0] + x*(y[1]-y[0]);

Routine: Linear interpolation implementation

6. Implementation 39

The total number of operations in the routine is 3 (1 mul, 2 adds/subs).

6.2 B-spline

X =

⎛
⎜⎜⎝

1
6

2
3

1
6 0

− 1
2 0 1

2 0
1
2 −1 1

2 0
− 1

6
1
2 − 1

2
1
6

⎞
⎟⎟⎠ , Z =

⎛
⎜⎜⎝

1
48

23
48

23
48

1
48

− 1
8 − 5

8
5
8

1
8

1
4 − 1

4 − 1
4

1
4

− 1
6

1
2 − 1

2
1
6

⎞
⎟⎟⎠

Formula: 4-point, 3rd-order B-spline x- and z-form coefficient matrices

For 4-point, 3rd-order B-spline, X requires 6 multiplications and Z requires 7. Note
that the polynomial evaluation requires some more, but the number is typically same
for both the x- and the z-form of an interpolator.

// 4-point, 3rd-order B-spline (x-form)
float ym1py1 = y[-1]+y[1];
float c0 = 1/6.0*ym1py1 + 2/3.0*y[0];
float c1 = 1/2.0*(y[1]-y[-1]);
float c2 = 1/2.0*ym1py1 - y[0];
float c3 = 1/2.0*(y[0]-y[1]) + 1/6.0*(y[2]-y[-1]);
return ((c3*x+c2)*x+c1)*x+c0;

Routine: 4-point, 3rd-order B-spline x-form implementation

// 4-point, 3rd-order B-spline (z-form)
float z = x - 1/2.0;
float even1 = y[-1]+y[2], modd1 = y[2]-y[-1];
float even2 = y[0]+y[1], modd2 = y[1]-y[0];
float c0 = 1/48.0*even1 + 23/48.0*even2;
float c1 = 1/8.0*modd1 + 5/8.0*modd2;
float c2 = 1/4.0*(even1-even2);
float c3 = 1/6.0*modd1 - 1/2.0*modd2;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 4-point, 3rd-order B-spline z-form implementation

For 4-point, 3rd-order B-spline, the total number of operations in the x-form routine
is 19 (9 muls, 10 adds/subs) and in the z-form 22 (10 muls, 12 adds/subs), so the
x-form is favorable.

6. Implementation 40

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
120

13
60

11
20

13
60

1
120 0

− 1
24 − 5

12 0 5
12

1
24 0

1
12

1
6 − 1

2
1
6

1
12 0

− 1
12

1
6 0 − 1

6
1
12 0

1
24 − 1

6
1
4 − 1

6
1
24 0

− 1
120

1
24 − 1

12
1
12 − 1

24
1

120

⎞
⎟⎟⎟⎟⎟⎟⎠

Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
3840

79
1280

841
1920

841
1920

79
1280

1
3840

− 1
384 − 25

128 − 77
192

77
192

25
128

1
384

1
96

7
32 − 11

48 − 11
48

7
32

1
96

− 1
48 − 1

16
7
24 − 7

24
1
16

1
48

1
48 − 1

16
1
24

1
24 − 1

16
1
48

− 1
120

1
24 − 1

12
1
12 − 1

24
1

120

⎞
⎟⎟⎟⎟⎟⎟⎠

Formula: 6-point, 5th-order B-spline x- and z-form coefficient matrices

For 6-point, 5th-order B-spline, X requires 15 multiplications against the 18 of Z, so
the x-form is probably more favorable.

// 6-point, 5th-order B-spline (x-form)
float ym2py2 = y[-2]+y[2], ym1py1 = y[-1]+y[1];
float y2mym2 = y[2]-y[-2], y1mym1 = y[1]-y[-1];
float sixthym1py1 = 1/6.0*ym1py1;
float c0 = 1/120.0*ym2py2 + 13/60.0*ym1py1 + 11/20.0*y[0];
float c1 = 1/24.0*y2mym2 + 5/12.0*y1mym1;
float c2 = 1/12.0*ym2py2 + sixthym1py1 - 1/2.0*y[0];
float c3 = 1/12.0*y2mym2 - 1/6.0*y1mym1;
float c4 = 1/24.0*ym2py2 - sixthym1py1 + 1/4.0*y[0];
float c5 = 1/120.0*(y[3]-y[-2]) + 1/24.0*(y[-1]-y[2]) +

1/12.0*(y[1]-y[0]);
return ((((c5*x+c4)*x+c3)*x+c2)*x+c1)*x+c0;

Routine: 6-point, 5th-order B-spline x-form implementation

For 6-point, 5th-order B-spline, the total number of operations in the x-form routine
is 42 (20 mul, 22 add/sub). There is a rule that a z-form routine with only pairing, no
larger grouping, requires order× (points+ 1)+ 2× points operations total. In this case,
the z-form would require 47 operations, so the x-form is a clear winner.

6.3 Lagrange

X =

⎛
⎜⎜⎝

0 1 0 0
− 1

3 − 1
2 1 − 1

6
1
2 −1 1

2 0
− 1

6
1
2 − 1

2
1
6

⎞
⎟⎟⎠ , Z =

⎛
⎜⎜⎝

− 1
16

9
16

9
16 − 1

16
1
24 − 9

8
9
8 − 1

24
1
4 − 1

4 − 1
4

1
4

− 1
6

1
2 − 1

2
1
6

⎞
⎟⎟⎠

Formula: 4-point, 3rd-order Lagrange x- and z-form coefficient matrices

6. Implementation 41

For 4-point, 3rd-order Lagrange, X requires 6 multiplications and Z requires 7.

// 4-point, 3rd-order Lagrange (x-form)
float c0 = y[0];
float c1 = y[1] - 1/3.0*y[-1] - 1/2.0*y[0] - 1/6.0*y[2];
float c2 = 1/2.0*(y[-1]+y[1]) - y[0];
float c3 = 1/6.0*(y[2]-y[-1]) + 1/2.0*(y[0]-y[1]);
return ((c3*x+c2)*x+c1)*x+c0;

Routine: 4-point, 3rd-order Lagrange x-form implementation

// 4-point, 3rd-order Lagrange (z-form)
float z = x - 1/2.0;
float even1 = y[-1]+y[2], odd1 = y[-1]-y[2];
float even2 = y[0]+y[1], odd2 = y[0]-y[1];
float c0 = 9/16.0*even2 - 1/16.0*even1;
float c1 = 1/24.0*odd1 - 9/8.0*odd2;
float c2 = 1/4.0*(even1-even2);
float c3 = 1/2.0*odd2 - 1/6.0*odd1;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 4-point, 3rd-order Lagrange z-form implementation

For 4-point, 3rd-order Lagrange, the total number of operations in the x-form routine
is 20 (9 muls, 11 adds/subs) and in the z-form 22 (10 muls, 12adds/subs), so the
x-form is more favorable.

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
1
20 − 1

2 − 1
3 1 − 1

4
1
30

− 1
24

2
3 − 5

4
2
3 − 1

24 0
− 1

24 − 1
24

5
12 − 7

12
7
24 − 1

24
1
24 − 1

6
1
4 − 1

6
1
24 0

− 1
120

1
24 − 1

12
1
12 − 1

24
1

120

⎞
⎟⎟⎟⎟⎟⎟⎠

Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
256 − 25

256
75
128

75
128 − 25

256
3

256
− 3

640
25
384 − 75

64
75
64 − 25

384
3

640
− 5

96
13
32 − 17

48 − 17
48

13
32 − 5

96
1
48 − 13

48
17
24 − 17

24
13
48 − 1

48
1
48 − 1

16
1
24

1
24 − 1

16
1
48

− 1
120

1
24 − 1

12
1
12 − 1

24
1

120

⎞
⎟⎟⎟⎟⎟⎟⎠

Formula: 6-point, 5th-order Lagrange x- and z-form coefficient matrices

For 6-point, 5th-order Lagrange, X requires 17 multiplications and Z requires 18.

6. Implementation 42

// 6-point, 5th-order Lagrange (x-form)
float ym1py1 = y[-1]+y[1];
float twentyfourthym2py2 = 1/24.0*(y[-2]+y[2]);
float c0 = y[0];
float c1 = 1/20.0*y[-2] - 1/2.0*y[-1] - 1/3.0*y[0] + y[1] -

1/4.0*y[2] + 1/30.0*y[3];
float c2 = 2/3.0*ym1py1 - 5/4.0*y[0] - twentyfourthym2py2;
float c3 = 5/12.0*y[0] - 7/12.0*y[1] + 7/24.0*y[2] -

1/24.0*(y[-2]+y[-1]+y[3]);
float c4 = 1/4.0*y[0] - 1/6.0*ym1py1 + twentyfourthym2py2;
float c5 = 1/120.0*(y[3]-y[-2]) + 1/24.0*(y[-1]-y[2]) +

1/12.0*(y[1]-y[0]);
return ((((c5*x+c4)*x+c3)*x+c2)*x+c1)*x+c0;

Routine: 6-point, 5th-order Lagrange x-form implementation

// 6-point, 5th-order Lagrange (z-form)
float z = x - 1/2.0;
float even1 = y[-2]+y[3], odd1 = y[-2]-y[3];
float even2 = y[-1]+y[2], odd2 = y[-1]-y[2];
float even3 = y[0]+y[1], odd3 = y[0]-y[1];
float c0 = 3/256.0*even1 - 25/256.0*even2 + 75/128.0*even3;
float c1 = 25/384.0*odd2 - 75/64.0*odd3 - 3/640.0*odd1;
float c2 = 13/32.0*even2 - 17/48.0*even3 - 5/96.0*even1;
float c3 = 1/48.0*odd1 - 13/48.0*odd2 + 17/24.0*odd3;
float c4 = 1/48.0*even1 - 1/16.0*even2 + 1/24.0*even3;
float c5 = 1/24.0*odd2 - 1/12.0*odd3 - 1/120.0*odd1;
return ((((c5*z+c4)*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 5th-order Lagrange z-form implementation

For 6-point, 5th-order Lagrange, the total number of operations in the x-form routine
is 48 (22 muls, 26 adds/subs), and in the z-form routine 47 (23 muls, 24 adds/subs).
Depending on the platform, either is faster.

6.4 Hermite

X =

⎛
⎜⎜⎝

0 1 0 0
− 1

2 0 1
2 0

1 − 5
2 2 − 1

2
− 1

2
3
2 − 3

2
1
2

⎞
⎟⎟⎠ , Z =

⎛
⎜⎜⎝

− 1
16

9
16

9
16 − 1

16
1
8 − 11

8
11
8 − 1

8
1
4 − 1

4 − 1
4

1
4

− 1
2

3
2 − 3

2
1
2

⎞
⎟⎟⎠

Formula: 4-point, 3rd-order Hermite x- and z-form coefficient matrices

For 4-point, 3rd-order Hermite, X requires 6 multiplications and Z requires 7.

6. Implementation 43

// 4-point, 3rd-order Hermite (x-form)
float c0 = y[0];
float c1 = 1/2.0*(y[1]-y[-1]);
float c2 = y[-1] - 5/2.0*y[0] + 2*y[1] - 1/2.0*y[2];
float c3 = 1/2.0*(y[2]-y[-1]) + 3/2.0*(y[0]-y[1]);
return ((c3*x+c2)*x+c1)*x+c0;

Routine: 4-point, 3rd-order Hermite x-form implementation

// 4-point, 3rd-order Hermite (z-form)
float z = x - 1/2.0;
float even1 = y[-1]+y[2], odd1 = y[-1]-y[2];
float even2 = y[0]+y[1], odd2 = y[0]-y[1];
float c0 = 9/16.0*even2 - 1/16.0*even1;
float c1 = 1/8.0*odd1 - 11/8.0*odd2;
float c2 = 1/4.0*(even1-even2);
float c3 = 3/2.0*odd2 - 1/2.0*odd1;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 4-point, 3rd-order Hermite z-form implementation

For 4-point, 3rd-order Hermite, the total number of operations in the x-form routine is
19 (9 muls, 10 adds/subs), and in the z-form routine 22 (10 muls, 12 adds/subs). So
the x-form routine is favorable.

X =

⎛
⎜⎜⎝

0 0 1 0 0 0
1
12 − 2

3 0 2
3 − 1

12 0
− 1

6
5
4 − 7

3
5
3 − 1

2
1
12

1
12 − 7

12
4
3 − 4

3
7
12 − 1

12

⎞
⎟⎟⎠

Z =

⎛
⎜⎜⎝

1
96 − 3

32
7
12

7
12 − 3

32
1
96

− 1
48

7
48 − 4

3
4
3 − 7

48
1
48

− 1
24

3
8 − 1

3 − 1
3

3
8 − 1

24
1
12 − 7

12
4
3 − 4

3
7
12 − 1

12

⎞
⎟⎟⎠

Formula: 6-point, 3rd-order Hermite x- and z-form coefficient matrices

For 6-point, 3rd-order Hermite, X requires 11 multiplications and Z requires 11.

// 6-point, 3rd-order Hermite (x-form)
float c0 = y[0];
float c1 = 1/12.0*(y[-2]-y[2]) + 2/3.0*(y[1]-y[-1]);
float c2 = 5/4.0*y[-1] - 7/3.0*y[0] + 5/3.0*y[1] -

1/2.0*y[2] + 1/12.0*y[3] - 1/6.0*y[-2];
float c3 = 1/12.0*(y[-2]-y[3]) + 7/12.0*(y[2]-y[-1]) +

4/3.0*(y[0]-y[1]);
return ((c3*x+c2)*x+c1)*x+c0;

Routine: 6-point, 3rd-order Hermite x-form implementation

6. Implementation 44

// 6-point, 3rd-order Hermite (z-form)
float z = x - 1/2.0;
float even1 = y[-2]+y[3], odd1 = y[-2]-y[3];
float even2 = y[-1]+y[2], odd2 = y[-1]-y[2];
float even3 = y[0]+y[1], fourthirdthodd3 = 4/3.0*(y[0]-y[1]);
float c0 = 1/96.0*even1 - 3/32.0*even2 + 7/12.0*even3;
float c1 = 7/48.0*odd2 - fourthirdthodd3 - 1/48.0*odd1;
float c2 = 3/8.0*even2 - 1/3.0*even3 - 1/24.0*even1;
float c3 = 1/12.0*odd1 - 7/12.0*odd2 + fourthirdthodd3;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 6-point, 3rd-order Hermite z-form implementation

For 6-point, 3rd-order Hermite, the total number of operations in the x-form routine
is 30 (14 muls, 16 adds/subs), and in the z-form routine 32 (14 muls, 18 adds/subs).
So the x-form routine is more favorable.

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
1
12 − 2

3 0 2
3 − 1

12 0
− 1

8
13
12 − 25

12
3
2 − 11

24
1
12

− 1
24 − 1

24
5
12 − 7

12
7
24 − 1

24
1
8 − 7

12
13
12 −1 11

24 − 1
12

− 1
24

5
24 − 5

12
5
12 − 5

24
1
24

⎞
⎟⎟⎟⎟⎟⎟⎠

Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
256 − 25

256
75
128

75
128 − 25

256
3

256
− 3

128
61
384 − 87

64
87
64 − 61

384
3

128
− 5

96
13
32 − 17

48 − 17
48

13
32 − 5

96
5
48 − 11

16
37
24 − 37

24
11
16 − 5

48
1
48 − 1

16
1
24

1
24 − 1

16
1
48

− 1
24

5
24 − 5

12
5
12 − 5

24
1
24

⎞
⎟⎟⎟⎟⎟⎟⎠

Formula: 6-point, 5th-order Hermite x- and z-form coefficient matrices

For 6-point, 5th-order Hermite, X requires 17 multiplications against the 18 of Z.

6. Implementation 45

// 6-point, 5th-order Hermite (x-form)
float eighthym2 = 1/8.0*y[-2];
float eleventwentyfourthy2 = 11/24.0*y[2];
float twelfthy3 = 1/12.0*y[3];
float c0 = y[0];
float c1 = 1/12.0*(y[-2]-y[2]) + 2/3.0*(y[1]-y[-1]);
float c2 = 13/12.0*y[-1] - 25/12.0*y[0] + 3/2.0*y[1] -

eleventwentyfourthy2 + twelfthy3 - eighthym2;
float c3 = 5/12.0*y[0] - 7/12.0*y[1] + 7/24.0*y[2] -

1/24.0*(y[-2]+y[-1]+y[3]);
float c4 = eighthym2 - 7/12.0*y[-1] + 13/12.0*y[0] - y[1] +

eleventwentyfourthy2 - twelfthy3;
float c5 = 1/24.0*(y[3]-y[-2]) + 5/24.0*(y[-1]-y[2]) +

5/12.0*(y[1]-y[0]);
return ((((c5*x+c4)*x+c3)*x+c2)*x+c1)*x+c0;

Routine: 6-point, 5th-order Hermite x-form implementation

// 6-point, 5th-order Hermite (z-form)
float z = x - 1/2.0;
float even1 = y[-2]+y[3], odd1 = y[-2]-y[3];
float even2 = y[-1]+y[2], odd2 = y[-1]-y[2];
float even3 = y[0]+y[1], odd3 = y[0]-y[1];
float c0 = 3/256.0*even1 - 25/256.0*even2 + 75/128.0*even3;
float c1 = -3/128.0*odd1 + 61/384.0*odd2 - 87/64.0*odd3;
float c2 = -5/96.0*even1 + 13/32.0*even2 - 17/48.0*even3;
float c3 = 5/48.0*odd1 - 11/16.0*odd2 + 37/24.0*odd3;
float c4 = 1/48.0*even1 - 1/16.0*even2 + 1/24.0*even3;
float c5 = -1/24.0*odd1 + 5/24.0*odd2 - 5/12.0*odd3;
return ((((c5*z+c4)*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 5th-order Hermite z-form implementation

For 6-point, 5th-order Hermite, the total number of operations in the x-form routine
is 50 (22 muls, 28 adds/subs), and in the z-form routine 47 (23 muls, 24 adds/subs).
Depending on the platform, either is faster.

6.5 2nd-order-osculating

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
− 1

2 0 1
2 0

1
2 −1 1

2 0
3
2 − 9

2
9
2 − 3

2
− 5

2
15
2 − 15

2
5
2

1 −3 3 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1
16

9
16

9
16 − 1

16
3
16 − 25

16
25
16 − 3

16
1
4 − 1

4 − 1
4

1
4

−1 3 −3 1
0 0 0 0
1 −3 3 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

Formula: 4-point, 5th-order 2nd-order-osculating x- and z-form coefficient
matrices

6. Implementation 46

For 4-point, 5th-order 2nd-order-osculating, X requires 7 multiplications and Z re-
quires 6.

// 4-point, 5th-order 2nd-order-osculating (x-form)
float y1my0 = y[1]-y[0];
float y2mym1 = y[2]-y[-1];
float c0 = y[0];
float c1 = 1/2.0*(y[1]-y[-1]);
float c2 = 1/2.0*(y[-1]+y[1]) - y[0];
float c3 = 9/2.0*y1my0 - 3/2.0*y2mym1;
float c4 = 5/2.0*y2mym1 - 15/2.0*y1my0;
float c5 = y[-1] + 3*y1my0 - y[2];
return ((((c5*x+c4)*x+c3)*x+c2)*x+c1)*x+c0;

Routine: 4-point, 5th-order 2nd-order-osculating x-form implementation

// 4-point, 5th-order 2nd-order-osculating (z-form)
float z = x - 1/2.0;
float even1 = y[-1]+y[2], odd1 = y[-1]-y[2];
float even2 = y[0]+y[1], odd2 = y[0]-y[1];
float c0 = 9/16.0*even2 - 1/16.0*even1;
float c1 = 3/16.0*odd1 - 25/16.0*odd2;
float c2 = 1/4.0*(even1-even2);
float c5 = odd1 - 3*odd2;
return (((c5*z*z-c5)*z+c2)*z+c1)*z+c0;

Routine: 4-point, 5th-order 2nd-order-osculating z-form implementation

For 4-point, 5th-order 2nd-order-osculating, the total number of operations in the x-
form routine is 26 (12 muls, 14 adds/subs), and in the z-form routine 24 (11 muls, 13
adds/subs). This makes the z-form more favorable.

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
1
12 − 2

3 0 2
3 − 1

12 0
− 1

24
2
3 − 5

4
2
3 − 1

24 0
− 3

8
13
8 − 35

12
11
4 − 11

8
7
24

13
24 − 8

3
21
4 − 31

6
61
24 − 1

2
− 5

24
25
24 − 25

12
25
12 − 25

24
5
24

⎞
⎟⎟⎟⎟⎟⎟⎠

Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
256 − 25

256
75
128

75
128 − 25

256
3

256
− 13

384
27
128 − 281

192
281
192 − 27

128
13
384

− 5
96

13
32 − 17

48 − 17
48

13
32 − 5

96
3
16 − 53

48
19
8 − 19

8
53
48 − 3

16
1
48 − 1

16
1
24

1
24 − 1

16
1
48

− 5
24

25
24 − 25

12
25
12 − 25

24
5
24

⎞
⎟⎟⎟⎟⎟⎟⎠

Formula: 6-point, 5th-order 2nd-order-osculating x- and z-form coefficient
matrices

6. Implementation 47

For 6-point, 5th-order 2nd-order-osculating, X requires 20 multiplications and Z re-
quires 18.

// 6-point, 5th-order 2nd-order-osculating (x-form)
float c0 = y[0];
float c1 = 1/12.0*(y[-2]-y[2]) + 2/3.0*(y[1]-y[-1]);
float c2 = 2/3.0*(y[-1]+y[1]) - 1/24.0*(y[-2]+y[2]) - 5/4.0*y[0];
float c3 = 13/8.0*y[-1] - 35/12.0*y[0] + 11/4.0*y[1] -

11/8.0*y[2] + 7/24.0*y[3] - 3/8.0*y[-2];
float c4 = 13/24.0*y[-2] - 8/3.0*y[-1] + 21/4.0*y[0] -

31/6.0*y[1] + 61/24.0*y[2] - 1/2.0*y[3];
float c5 = 5/24.0*(y[3]-y[-2]) + 25/24.0*(y[-1]-y[2]) +

25/12.0*(y[1]-y[0]);
return ((((c5*x+c4)*x+c3)*x+c2)*x+c1)*x+c0;

Routine: 6-point, 5th-order 2nd-order-osculating x-form implementation

// 6-point, 5th-order 2nd-order-osculating (z-form)
float z = x - 1/2.0;
float even1 = y[-2]+y[3], odd1 = y[-2]-y[3];
float even2 = y[-1]+y[2], odd2 = y[-1]-y[2];
float even3 = y[0]+y[1], odd3 = y[0]-y[1];
float c0 = 3/256.0*even1 - 25/256.0*even2 + 75/128.0*even3;
float c1 = 27/128.0*odd2 - 281/192.0*odd3 - 13/384.0*odd1;
float c2 = 13/32.0*even2 - 17/48.0*even3 - 5/96.0*even1;
float c3 = 3/16.0*odd1 - 53/48.0*odd2 + 19/8.0*odd3;
float c4 = 1/48.0*even1 - 1/16.0*even2 + 1/24.0*even3;
float c5 = 25/24.0*odd2 - 25/12.0*odd3 - 5/24.0*odd1;
return ((((c5*z+c4)*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 5th-order 2nd-order-osculating z-form implementation

For 6-point, 5th-order 2nd-order-osculating, the total number of operations in the x-
form routine is 52 (25 muls, 27 adds/subs), and in the z-form routine 47 (23 muls, 24
adds/subs). This makes the z-form more favorable.

6.6 Watte tri-linear

X =

⎛
⎝ 0 1 0 0

− 1
2 − 1

2
3
2 − 1

2
1
2 − 1

2 − 1
2

1
2

⎞
⎠ , Z =

⎛
⎝ − 1

8
5
8

5
8 − 1

8
0 −1 1 0
1
2 − 1

2 − 1
2

1
2

⎞
⎠

Formula: 4-point, 2nd-order Watte tri-linear x- and z-form coefficient matri-
ces

For 4-point, 2nd-order Watte tri-linear, X requires 3 multiplications and Z requires 3.

6. Implementation 48

// 4-point, 2nd-order Watte tri-linear (x-form)
float ym1py2 = y[-1]+y[2];
float c0 = y[0];
float c1 = 3/2.0*y[1] - 1/2.0*(y[0]+ym1py2);
float c2 = 1/2.0*(ym1py2-y[0]-y[1]);
return (c2*x+c1)*x+c0;

Routine: 4-point, 2nd-order Watte tri-linear x-form implementation

// 4-point, 2nd-order Watte tri-linear (z-form)
float z = x - 1/2.0;
float even1 = y[-1]+y[2], even2 = y[0]+y[1];
float c0 = 5/8.0*even2 - 1/8.0*even1;
float c1 = y[1]-y[0];
float c2 = 1/2.0*(even1-even2);
return (c2*z+c1)*z+c0;

Routine: 4-point, 2nd-order Watte tri-linear z-form implementation

For 4-point, 2nd-order Watte tri-linear, the total number of operations in the x-form
routine is 12 (5 muls, 7 adds/subs), and in the z-form routine 13 (5 muls, 8 adds/subs).
This makes the x-form more favorable.

6.7 Parabolic 2x

X =

⎛
⎝

1
4

1
2

1
4 0

− 1
2 0 1

2 0
1
4 − 1

4 − 1
4

1
4

⎞
⎠ , Z =

⎛
⎝

1
16

7
16

7
16

1
16

− 1
4 − 1

4
1
4

1
4

1
4 − 1

4 − 1
4

1
4

⎞
⎠

Formula: 4-point, 2nd-order parabolic 2x x- and z-form coefficient matrices

For 4-point, 2nd-order parabolic 2x, X requires 4 multiplications and Z requires 4.

// 4-point, 2nd-order parabolic 2x (x-form)
float y1mym1 = y[1]-y[-1];
float c0 = 1/2.0*y[0] + 1/4.0*(y[-1]+y[1]);
float c1 = 1/2.0*y1mym1;
float c2 = 1/4.0*(y[2]-y[0]-y1mym1);
return (c2*x+c1)*x+c0;

Routine: 4-point, 2nd-order parabolic 2x x-form implementation

// 4-point, 2nd-order parabolic 2x (z-form)
float z = x - 1/2.0;
float even1 = y[-1]+y[2], even2 = y[0]+y[1];
float c0 = 1/16.0*even1 + 7/16.0*even2;
float c1 = 1/4.0*(y[1]-y[0]+y[2]-y[-1]);
float c2 = 1/4.0*(even1-even2);
return (c2*z+c1)*z+c0;

Routine: 4-point, 2nd-order parabolic 2x z-form implementation

6. Implementation 49

For 4-point, 2nd-order parabolic 2x, the total number of operations in the x-form rou-
tine is 13 (6 muls, 7 adds/subs), and in the z-form routine 16 (6 muls, 10 adds/subs).
This makes the x-form more favorable.

6.8 2-point, 3rd-order optimal

Rather than making it a big deal, we presume that the z-form is the most favorable for
the optimal interpolators. This is probably true, because the simplicity of the X matri-
ces with the traditional interpolators has to do with that they were symbolically con-
structed. With the optimal interpolators, we are dealing with virtually unconstrained
floating point constants, so it is very unlikely that any pairing could be done or other
shortcuts could be made in the x-form. It seems that with some rounding of the co-
efficients, it is possible to do additional grouping in the Z matrix for some of these
interpolators. Next, only the z-form implementations for the optimal interpolators are
given.

// Optimal 2x (2-point, 3rd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float c0 = even1*0.50037842517188658;
float c1 = odd1*1.00621089801788210;
float c2 = even1*-0.004541102062639801;
float c3 = odd1*-1.57015627178718420;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 2-point, 3rd-order optimal 2x z-form implementation

// Optimal 4x (2-point, 3rd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float c0 = even1*0.50013034073688023;
float c1 = odd1*1.09617817497678520;
float c2 = even1*-0.001564088842561871;
float c3 = odd1*-1.32598918957298410;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 2-point, 3rd-order optimal 4x z-form implementation

// Optimal 8x (2-point, 3rd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float c0 = even1*0.50004007194083089;
float c1 = odd1*1.06397659072500650;
float c2 = even1*-0.000480863289971321;
float c3 = odd1*-0.73514591836770027;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 2-point, 3rd-order optimal 8x z-form implementation

6. Implementation 50

// Optimal 16x (2-point, 3rd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float c0 = even1*0.50001096675880796;
float c1 = odd1*1.03585606328743830;
float c2 = even1*-0.000131601105693441;
float c3 = odd1*-0.38606621963374965;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 2-point, 3rd-order optimal 16x z-form implementation

// Optimal 32x (2-point, 3rd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float c0 = even1*0.50000286037713559;
float c1 = odd1*1.01889120864375270;
float c2 = even1*-0.000034324525627571;
float c3 = odd1*-0.19775766248673177;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 2-point, 3rd-order optimal 32x z-form implementation

The 2-point, 3rd-order optimal interpolation z-form implementations require total 13
(7 muls, 6 adds/subs) operations each.

6.9 4-point, 2nd-order optimal

// Optimal 2x (4-point, 2nd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.42334633257225274 + even2*0.07668732202139628;
float c1 = odd1*0.26126047291143606 + odd2*0.24778879018226652;
float c2 = even1*-0.213439787561776841 + even2*0.21303593243799016;
return (c2*z+c1)*z+c0;

Routine: 4-point, 2nd-order optimal 2x z-form implementation

// Optimal 4x (4-point, 2nd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.38676264891201206 + even2*0.11324319172521946;
float c1 = odd1*0.01720901456660906 + odd2*0.32839294317251788;
float c2 = even1*-0.228653995318581881 + even2*0.22858390767180370;
return (c2*z+c1)*z+c0;

Routine: 4-point, 2nd-order optimal 4x z-form implementation

6. Implementation 51

// Optimal 8x (4-point, 2nd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.32852206663814043 + even2*0.17147870380790242;
float c1 = odd1*-0.35252373075274990 + odd2*0.45113687946292658;
float c2 = even1*-0.240052062078895181 + even2*0.24004281672637814;
return (c2*z+c1)*z+c0;

Routine: 4-point, 2nd-order optimal 8x z-form implementation

// Optimal 16x (4-point, 2nd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.20204741371575463 + even2*0.29795268253813623;
float c1 = odd1*-1.11855475338366150 + odd2*0.70626377291054832;
float c2 = even1*-0.245061178654743641 + even2*0.24506002360805534;
return (c2*z+c1)*z+c0;

Routine: 4-point, 2nd-order optimal 16x z-form implementation

// Optimal 32x (4-point, 2nd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*-0.04817865217726123 + even2*0.54817866412548932;
float c1 = odd1*-2.62328241292796620 + odd2*1.20778105913587620;
float c2 = even1*-0.247552438397138281 + even2*0.24755229501840223;
return (c2*z+c1)*z+c0;

Routine: 4-point, 2nd-order optimal 32x z-form implementation

The 4-point, 2nd-order optimal interpolation z-form implementations require total 18
(8 muls, 10 adds/subs) operations each.

6.10 4-point, 3rd-order optimal

// Optimal 2x (4-point, 3rd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.45868970870461956 + even2*0.04131401926395584;
float c1 = odd1*0.48068024766578432 + odd2*0.17577925564495955;
float c2 = even1*-0.246185007019907091 + even2*0.24614027139700284;
float c3 = odd1*-0.36030925263849456 + odd2*0.10174985775982505;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 4-point, 3rd-order optimal 2x z-form implementation

6. Implementation 52

// Optimal 4x (4-point, 3rd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.46209345013918979 + even2*0.03790693583186333;
float c1 = odd1*0.51344507801315964 + odd2*0.16261507145522014;
float c2 = even1*-0.248540332990294211 + even2*0.24853570133765701;
float c3 = odd1*-0.42912649274763925 + odd2*0.13963062613760227;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 4-point, 3rd-order optimal 4x z-form implementation

// Optimal 8x (4-point, 3rd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.46360002085841184 + even2*0.03640000638072349;
float c1 = odd1*0.52776949859997280 + odd2*0.15746108253367153;
float c2 = even1*-0.249658121535793251 + even2*0.24965779466617388;
float c3 = odd1*-0.46789242171187317 + odd2*0.15551896027602030;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 4-point, 3rd-order optimal 8x z-form implementation

// Optimal 16x (4-point, 3rd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.46436507349411416 + even2*0.03563492826010761;
float c1 = odd1*0.53463126553787166 + odd2*0.15512856361039451;
float c2 = even1*-0.249923540967159741 + even2*0.24992351991649797;
float c3 = odd1*-0.48601256046234864 + odd2*0.16195131297091253;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 4-point, 3rd-order optimal 16x z-form implementation

// Optimal 32x (4-point, 3rd-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.46465589031535864 + even2*0.03534410979496938;
float c1 = odd1*0.53726845877054186 + odd2*0.15424449410914165;
float c2 = even1*-0.249981930954029101 + even2*0.24998192963009191;
float c3 = odd1*-0.49369595780454456 + odd2*0.16455902278580614;
return ((c3*z+c2)*z+c1)*z+c0;

Routine: 4-point, 3rd-order optimal 32x z-form implementation

The 4-point, 3rd-order optimal interpolation z-form implementations require total 23
(11 muls, 12 adds/subs) operations each.

6. Implementation 53

6.11 4-point, 4th-order optimal

// Optimal 2x (4-point, 4th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.45645918406487612 + even2*0.04354173901996461;
float c1 = odd1*0.47236675362442071 + odd2*0.17686613581136501;
float c2 = even1*-0.253674794204558521 + even2*0.25371918651882464;
float c3 = odd1*-0.37917091811631082 + odd2*0.11952965967158000;
float c4 = even1*0.04252164479749607 + even2*-0.04289144034653719;
return (((c4*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 4-point, 4th-order optimal 2x z-form implementation

// Optimal 4x (4-point, 4th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.46567255120778489 + even2*0.03432729708429672;
float c1 = odd1*0.53743830753560162 + odd2*0.15429462557307461;
float c2 = even1*-0.251942101340217441 + even2*0.25194744935939062;
float c3 = odd1*-0.46896069955075126 + odd2*0.15578800670302476;
float c4 = even1*0.00986988334359864 + even2*-0.00989340017126506;
return (((c4*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 4-point, 4th-order optimal 4x z-form implementation

// Optimal 8x (4-point, 4th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.46771532012068961 + even2*0.03228466824404497;
float c1 = odd1*0.55448654344364423 + odd2*0.14851181120641987;
float c2 = even1*-0.250587283698110121 + even2*0.25058765188457821;
float c3 = odd1*-0.49209020939096676 + odd2*0.16399414834151946;
float c4 = even1*0.00255074537015887 + even2*-0.00255226912537286;
return (((c4*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 4-point, 4th-order optimal 8x z-form implementation

// Optimal 16x (4-point, 4th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.46822774170144532 + even2*0.03177225758005808;
float c1 = odd1*0.55890365706150436 + odd2*0.14703258836343669;
float c2 = even1*-0.250153411893796031 + even2*0.25015343462990891;
float c3 = odd1*-0.49800710906733769 + odd2*0.16600005174304033;
float c4 = even1*0.00064264050033187 + even2*-0.00064273459469381;
return (((c4*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 4-point, 4th-order optimal 16x z-form implementation

6. Implementation 54

// Optimal 32x (4-point, 4th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float c0 = even1*0.46835497211269561 + even2*0.03164502784253309;
float c1 = odd1*0.56001293337091440 + odd2*0.14666238593949288;
float c2 = even1*-0.250038759826233691 + even2*0.25003876124297131;
float c3 = odd1*-0.49949850957839148 + odd2*0.16649935475113800;
float c4 = even1*0.00016095224137360 + even2*-0.00016095810460478;
return (((c4*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 4-point, 4th-order optimal 32x z-form implementation

The 4-point, 4th-order optimal interpolation z-form implementations require total 28
(14 muls, 14 adds/subs) operations each.

6.12 6-point, 4th-order optimal

// Optimal 2x (6-point, 4th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float even3 = y[3]+y[-2], odd3 = y[3]-y[-2];
float c0 = even1*0.37484203669443822 + even2*0.11970939637439368

+ even3*0.00544862268096358;
float c1 = odd1*0.19253897284651597 + odd2*0.22555179040018719

+ odd3*0.02621377625620669;
float c2 = even1*-0.154026006475653071 + even2*0.10546111301131367

+ even3*0.04856757454258609;
float c3 = odd1*-0.06523685579716083 + odd2*-0.04867197815057284

+ odd3*0.04200764942718964;
float c4 = even1*0.03134095684084392 + even2*-0.04385804833432710

+ even3*0.01249475765486819;
return (((c4*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 4th-order optimal 2x z-form implementation

6. Implementation 55

// Optimal 4x (6-point, 4th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float even3 = y[3]+y[-2], odd3 = y[3]-y[-2];
float c0 = even1*0.26148143200222657 + even2*0.22484494681472966

+ even3*0.01367360612950508;
float c1 = odd1*-0.20245593827436142 + odd2*0.29354348112881601

+ odd3*0.06436924057941607;
float c2 = even1*-0.022982104451679701 + even2*-0.09068617668887535

+ even3*0.11366875749521399;
float c3 = odd1*0.36296419678970931 + odd2*-0.26421064520663945

+ odd3*0.08591542869416055;
float c4 = even1*0.02881527997393852 + even2*-0.04250898918476453

+ even3*0.01369173779618459;
return (((c4*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 4th-order optimal 4x z-form implementation

// Optimal 8x (6-point, 4th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float even3 = y[3]+y[-2], odd3 = y[3]-y[-2];
float c0 = even1*0.07571827673995030 + even2*0.39809419102537769

+ even3*0.02618753167558019;
float c1 = odd1*-0.87079480370960549 + odd2*0.41706012247048818

+ odd3*0.12392296259397995;
float c2 = even1*0.186883718356452901 + even2*-0.40535151498252686

+ even3*0.21846781431808182;
float c3 = odd1*1.09174419992174300 + odd2*-0.62917625718809478

+ odd3*0.15915674384870970;
float c4 = even1*0.03401038103941584 + even2*-0.05090907029392906

+ even3*0.01689861603514873;
return (((c4*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 4th-order optimal 8x z-form implementation

6. Implementation 56

// Optimal 16x (6-point, 4th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float even3 = y[3]+y[-2], odd3 = y[3]-y[-2];
float c0 = even1*-0.30943127416213301 + even2*0.75611844407537543

+ even3*0.05331283006820442;
float c1 = odd1*-2.23586327978235700 + odd2*0.66020840412562265

+ odd3*0.25104761112921636;
float c2 = even1*0.625420761014402691 + even2*-1.06313460380183860

+ even3*0.43771384337431529;
float c3 = odd1*2.57088518304678090 + odd2*-1.36878543609177150

+ odd3*0.30709424868485174;
float c4 = even1*0.03755086455339280 + even2*-0.05631219122315393

+ even3*0.01876132424143207;
return (((c4*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 4th-order optimal 16x z-form implementation

// Optimal 32x (6-point, 4th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float even3 = y[3]+y[-2], odd3 = y[3]-y[-2];
float c0 = even1*-1.05730227922290790 + even2*1.45069541587021430

+ even3*0.10660686335233649;
float c1 = odd1*-4.87455554035028720 + odd2*1.12509567592532630

+ odd3*0.49985370215839708;
float c2 = even1*1.479370435823112101 + even2*-2.34405608915933780

+ even3*0.86468565335070746;
float c3 = odd1*5.42677291742286180 + odd2*-2.79672428287565160

+ odd3*0.59267998874843331;
float c4 = even1*0.03957507923965987 + even2*-0.05936083498715066

+ even3*0.01978575568000696;
return (((c4*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 4th-order optimal 32x z-form implementation

The 6-point, 4th-order optimal interpolation z-form implementations require total 40
(19 muls, 21 adds/subs) operations each.

6. Implementation 57

6.13 6-point, 5th-order optimal

// Optimal 2x (6-point, 5th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float even3 = y[3]+y[-2], odd3 = y[3]-y[-2];
float c0 = even1*0.40513396007145713 + even2*0.09251794438424393

+ even3*0.00234806603570670;
float c1 = odd1*0.28342806338906690 + odd2*0.21703277024054901

+ odd3*0.01309294748731515;
float c2 = even1*-0.191337682540351941 + even2*0.16187844487943592

+ even3*0.02946017143111912;
float c3 = odd1*-0.16471626190554542 + odd2*-0.00154547203542499

+ odd3*0.03399271444851909;
float c4 = even1*0.03845798729588149 + even2*-0.05712936104242644

+ even3*0.01866750929921070;
float c5 = odd1*0.04317950185225609 + odd2*-0.01802814255926417

+ odd3*0.00152170021558204;
return ((((c5*z+c4)*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 5th-order optimal 2x z-form implementation

// Optimal 4x (6-point, 5th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float even3 = y[3]+y[-2], odd3 = y[3]-y[-2];
float c0 = even1*0.41496902959240894 + even2*0.08343081932889224

+ even3*0.00160015038681571;
float c1 = odd1*0.31625515004859783 + odd2*0.21197848565176958

+ odd3*0.00956166668408054;
float c2 = even1*-0.203271896548875371 + even2*0.17989908432249280

+ even3*0.02337283412161328;
float c3 = odd1*-0.20209241069835732 + odd2*0.01760734419526000

+ odd3*0.02985927012435252;
float c4 = even1*0.04100948858761910 + even2*-0.06147760875085254

+ even3*0.02046802954581191;
float c5 = odd1*0.06607747864416924 + odd2*-0.03255079211953620

+ odd3*0.00628989632244913;
return ((((c5*z+c4)*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 5th-order optimal 4x z-form implementation

6. Implementation 58

// Optimal 8x (6-point, 5th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float even3 = y[3]+y[-2], odd3 = y[3]-y[-2];
float c0 = even1*0.41660797292569773 + even2*0.08188468587188069

+ even3*0.00150734119050266;
float c1 = odd1*0.32232780822726981 + odd2*0.21076321997422021

+ odd3*0.00907649978070957;
float c2 = even1*-0.205219993961471501 + even2*0.18282942057327367

+ even3*0.02239057377093268;
float c3 = odd1*-0.21022298520246224 + odd2*0.02176417471349534

+ odd3*0.02898626924395209;
float c4 = even1*0.04149963966704384 + even2*-0.06224707096203808

+ even3*0.02074742969707599;
float c5 = odd1*0.07517133281176167 + odd2*-0.03751837438141215

+ odd3*0.00747588873055296;
return ((((c5*z+c4)*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 5th-order optimal 8x z-form implementation

// Optimal 16x (6-point, 5th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float even3 = y[3]+y[-2], odd3 = y[3]-y[-2];
float c0 = even1*0.41809989254549901 + even2*0.08049339946273310

+ even3*0.00140670799165932;
float c1 = odd1*0.32767596257424964 + odd2*0.20978189376640677

+ odd3*0.00859567104974701;
float c2 = even1*-0.206944618112960001 + even2*0.18541689550861262

+ even3*0.02152772260740132;
float c3 = odd1*-0.21686095413034051 + odd2*0.02509557922091643

+ odd3*0.02831484751363800;
float c4 = even1*0.04163046817137675 + even2*-0.06244556931623735

+ even3*0.02081510113314315;
float c5 = odd1*0.07990500783668089 + odd2*-0.03994519162531633

+ odd3*0.00798609327859495;
return ((((c5*z+c4)*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 5th-order optimal 16x z-form implementation

7. Summary 59

// Optimal 32x (6-point, 5th-order) (z-form)
float z = x - 1/2.0;
float even1 = y[1]+y[0], odd1 = y[1]-y[0];
float even2 = y[2]+y[-1], odd2 = y[2]-y[-1];
float even3 = y[3]+y[-2], odd3 = y[3]-y[-2];
float c0 = even1*0.42685983409379380 + even2*0.07238123511170030

+ even3*0.00075893079450573;
float c1 = odd1*0.35831772348893259 + odd2*0.20451644554758297

+ odd3*0.00562658797241955;
float c2 = even1*-0.217009177221292431 + even2*0.20051376594086157

+ even3*0.01649541128040211;
float c3 = odd1*-0.25112715343740988 + odd2*0.04223025992200458

+ odd3*0.02488727472995134;
float c4 = even1*0.04166946673533273 + even2*-0.06250420114356986

+ even3*0.02083473440841799;
float c5 = odd1*0.08349799235675044 + odd2*-0.04174912841630993

+ odd3*0.00834987866042734;
return ((((c5*z+c4)*z+c3)*z+c2)*z+c1)*z+c0;

Routine: 6-point, 5th-order optimal 32x z-form implementation

The 6-point, 5th-order optimal interpolation z-form implementations require total 47
(23 muls, 24 adds/subs) operations each.

7. Summary

The following table lists the modified SNR values along with other useful information
of the interpolators.

7. Summary 60

Mod. ×
SNR N × + Type Interpolator
(dB) −
19.1 2 1 3 2p 1o Linear
22.1 2 11 24 4p 5o 2o-osculating
23.5 2 9 19 4p 3o Hermite
27.7 2 9 20 4p 3o Lagrange
27.9 2 5 12 4p 2o Watte tri-lin.
28.0 2 7 13 2p 3o Optimal 2x
28.6 2 6 13 4p 2o Parabolic 2x
29.9 2 23 47 6p 5o 2o-osculating
30.5 2 14 30 6p 3o Hermite
31.0 2 22 47 6p 5o Hermite
35.2 2 22 47 6p 5o Lagrange
38.2 2 9 19 4p 3o B-spline
45.1 2 8 18 4p 2o Optimal 2x
57.3 2 20 42 6p 5o B-spline
65.9 2 11 23 4p 3o Optimal 2x
69.8 2 14 28 4p 4o Optimal 2x
89.8 2 19 40 6p 4o Optimal 2x

111.4 2 23 47 6p 5o Optimal 2x
33.8 4 1 3 2p 1o Linear
34.9 4 5 12 4p 2o Watte tri-lin.
39.1 4 7 13 2p 3o Optimal 4x
41.9 4 11 47 4p 5o 2o-osculating
44.2 4 9 19 4p 3o Hermite
50.7 4 6 13 4p 2o Parabolic 2x
52.8 4 9 20 4p 3o Lagrange
60.2 4 14 30 6p 3o Hermite
60.4 4 23 47 6p 5o 2o-osculating
62.3 4 22 47 6p 5o Hermite
64.6 4 8 18 4p 2o Optimal 4x
67.6 4 9 19 4p 3o B-spline
70.9 4 22 47 6p 5o Lagrange
89.0 4 11 23 4p 3o Optimal 4x

101.1 4 14 28 4p 4o Optimal 4x
101.4 4 20 42 6p 5o B-spline
120.6 4 19 40 6p 4o Optimal 4x
149.3 4 23 47 6p 5o Optimal 4x

46.8 8 5 12 4p 2o Watte tri-lin.
47.0 8 1 3 2p 1o Linear
49.7 8 7 13 2p 3o Optimal 8x
61.1 8 11 24 4p 5o 2o-osculating
64.0 8 9 19 4p 3o Hermite
70.6 8 6 13 4p 2o Parabolic 2x
77.7 8 9 20 4p 3o Lagrange
83.5 8 8 18 4p 2o Optimal 8x
89.1 8 14 30 6p 3o Hermite
91.4 8 23 47 6p 5o 2o-osculating
93.7 8 22 47 6p 5o Hermite
94.1 8 9 19 4p 3o B-spline

Mod. ×
SNR N × + Type Interpolator
(dB) −

107.5 8 22 47 6p 5o Lagrange
112.9 8 11 23 4p 3o Optimal 8x
126.4 8 14 28 4p 4o Optimal 8x
141.1 8 20 42 6p 5o B-spline
151.2 8 19 40 6p 4o Optimal 8x
185.4 8 23 47 6p 5o Optimal 8x
59.3 16 5 12 4p 2o Watte tri-lin.
59.7 16 1 3 2p 1o Linear
61.0 16 7 13 2p 3o Optimal 16x
79.9 16 11 24 4p 5o 2o-osculating
83.1 16 9 19 4p 3o Hermite
89.5 16 6 13 4p 2o Parabolic 2x

101.9 16 8 18 4p 2o Optimal 16x
102.2 16 9 20 4p 3o Lagrange
116.3 16 14 30 6p 3o Hermite
119.3 16 9 19 4p 3o B-spline
122.1 16 23 47 6p 5o 2o-osculating
124.7 16 22 47 6p 5o Hermite
136.9 16 11 23 4p 3o Optimal 16x
144.1 16 22 47 6p 5o Lagrange
150.7 16 14 28 4p 4o Optimal 16x
179.0 16 20 42 6p 5o B-spline
181.6 16 19 40 6p 4o Optimal 16x
221.5 16 23 47 6p 5o Optimal 16x
71.8 32 5 12 4p 2o Watte tri-lin.
72.0 32 1 3 2p 1o Linear
72.7 32 7 13 2p 3o Optimal 32x
98.3 32 11 24 4p 5o 2o-osculating

101.8 32 9 19 4p 3o Hermite
108.0 32 6 13 4p 2o Parabolic 2x
120.2 32 8 18 4p 2o Optimal 32x
126.6 32 9 20 4p 3o Lagrange
142.3 32 14 30 6p 3o Hermite
143.9 32 9 19 4p 3o B-spline
152.6 32 23 47 6p 5o 2o-osculating
155.4 32 22 47 6p 5o Hermite
161.0 32 11 23 4p 3o Optimal 32x
174.9 32 14 28 4p 4o Optimal 32x
180.5 32 22 47 6p 5o Lagrange
212.0 32 19 40 6p 4o Optimal 32x
215.9 32 20 42 6p 5o B-spline
257.8 32 23 47 6p 5o Optimal 32x
84.3 64 1 3 2p 1o Linear
96.6 128 1 3 2p 1o (estimated)

108.9 256 1 3 2p 1o
121.2 512 1 3 2p 1o
133.5 1024 1 3 2p 1o
145.8 2048 1 3 2p 1o

Table: Modified SNR values of the compared interpolators in ascending or-
der, for various oversampling ratios (N). The × column gives the total num-
ber of multiplications, and the ×+ − column the total number of mul/add/sub
operations, required by the version of the interpolation routine that minimizes
that count. The winning choices for each criterion (within the oversampling
ratio) are marked with bold blue

8. Pre-emphasis 61

The optimal interpolators are superior (especially with low N) within interpolators of
same order and samplepoints – no surprise, they were designed to be. They also
often require the least operations for a given SNR.

For example, if one wants at least 100dB modified SNR with the least processing
(total number of operations), the table suggests the following choices for the interpo-
lator.

6-point, 5th-order optimal 2x with 2x oversampling (111.4dB);
4-point, 4th-order optimal 4x with 4x oversampling (101.1dB);
4-point, 3rd-order optimal 8x with 8x oversampling (112.9dB);
4-point, 2nd-order optimal 16x with 16x oversampling (101.9dB);
Parabolic 2x with 32x oversampling (108.0dB).

For higher oversampling ratios (N), linear interpolation is the best choice because of
its implementation simplicity. At high N, the oversampled signal is usually not wholly
generated, but evaluated only at points needed. In this light, the property of linear
interpolation of operating only on two points is an important quality.

It is outside the scope of this paper to make guesses of the most profitable over-
sampling ratio. Also, it shall only be commented that using polynomial interpolators
with unoversampled input is a choice that can only be made when the quality is not
that important but speed is essential, the most useful interpolators in that case being
linear and 4-point Hermite, and Watte tri-linear, which is somewhere between those
two in both quality and computational complexity.

8. Pre-emphasis

Compensation for an interpolator passband attenuation can be done with a pre-
emphasis filter. Doing the compensation after the whole resampling process would
generally be harder, because the required filter would need to be different for differ-
ent (possible varying) target samplerates. In addition to being harder, post-emphasis
would also be less predictable, so pre-emphasis is presumed throughout this paper.

Design of the oversampling and pre-emphasis filter(s) has been left for the reader.
To make this job easier, minmax-error polynomial approximations of the passband
magnitude frequency responses of the interpolators are given in the following table,
with a maximum error of ±0.001dB. The x variable is the frequency in radians. x = 0
corresponds to 0Hz and x = π to the passband edge frequency, i.e. the Nyquist
frequency of the original sampledata before upsampling by N.

8. Pre-emphasis 62

Type Interpolator N Polynomial approximation of passband magnitude response
2p 1o Linear 1 1 + x^2*-0.08322989624857348 + x^4*0.00271934406067139 +

x^6*-0.00003971672040791
2 1 + x^2*-0.02080088884033381 + x^4*0.00016313313160313
4 1 + x^2*-0.00520782546507489 + x^4*0.00001068495970745
8 1 + x^2*-0.00129654618588707

16 1 + x^2*-0.00032517439633740
32 1 + x^2*-0.00008135855031023

4p 3o B-spline 1 1 + x^2*-0.16640502255773582 + x^4*0.01228017737024591 +
x^6*-0.00050027796209637 + x^8*0.00000963132802828

2 1 + x^2*-0.04165500855002408 + x^4*0.00077433197774282 +
x^6*-0.00000758254328763

4 1 + x^2*-0.01041096020557994 + x^4*0.00004696830873626
8 1 + x^2*-0.00257931742447139

16 1 + x^2*-0.00064948375683407
32 1 + x^2*-0.00016266297211713

6p 5o B-spline 1 1 + x^2*-0.24971133684507330 + x^4*0.02883604361622073 +
x^6*-0.00198230583493742 + x^8*0.00008180902955303 +
x^10*-0.00000158312808302

2 1 + x^2*-0.06242909544523705 + x^4*0.00178139138425410 +
x^6*-0.00002582908012259

4 1 + x^2*-0.01560372802650468 + x^4*0.00010700525591829
8 1 + x^2*-0.00390591284558800 + x^4*0.00000701051188486

16 1 + x^2*-0.00097292994241284
32 1 + x^2*-0.00024394341875457

4p 3o Lagrange 1 1 + x^2*-0.00009488096453117 + x^4*-0.01514677142173045 +
x^6*0.00146109576356452 + x^8*-0.00006419369304970 +
x^10*0.00000123063707050

2 1 + x^2*-0.00004518371420257 + x^4*-0.00092664677942848 +
x^6*0.00001866341219874

4 1 + x^2*-0.00001484719751166 + x^4*-0.00005475309363511
8 1 + x^2*-0.00003007293026739

16 1 + x^2*-0.00000189939505604
32 1 + x^2*-0.00000011902044674

6p 5o Lagrange 1 1 + x^2*0.00031096876457228 + x^4*-0.00061518445014183 +
x^6*-0.00274624322037590 + x^8*0.00042005143809930 +
x^10*-0.00002565329098802 + x^12*0.00000060672095234

2 1 + x^2*0.00023630204175958 + x^4*-0.00015542700665419 +
x^6*-0.00001887712089898

4 1 + x^2*0.00002716600105685 + x^4*-0.00000934958595234
8 1 + x^2*-0.00000085807324002

16 1 + x^2*0.00000001124268487
32 1 + x^2*-0.00000003076348541

4p 3o Hermite 1 1 + x^2*-0.00005333203257415 + x^4*-0.01242578041093850 +
x^6*0.00109014040055239 + x^8*-0.00004417926195795 +
x^10*0.00000079906102798

2 1 + x^2*-0.00003062028167362 + x^4*-0.00076214500513774 +
x^6*0.00001412073481103

4 1 + x^2*-0.00001102344703875 + x^4*-0.00004517529147094
8 1 + x^2*-0.00002463837055619

16 1 + x^2*-0.00000155457581194
32 1 + x^2*-0.00000009738219240

Table: Polynomial approximations of interpolator passband responses (. . .)

8. Pre-emphasis 63

Type Interpolator N Polynomial approximation of passband magnitude response
6p 3o Hermite 1 1 + x^2*0.00018259576650771 + x^4*-0.00175056161346116 +

x^6*-0.00194042192557450 + x^8*0.00029325481059871 +
x^10*-0.00001735249351243 + x^12*0.00000039974321014

2 1 + x^2*0.00016315772984362 + x^4*-0.00019365493638948 +
x^6*-0.00001330449384056

4 1 + x^2*0.00001886323801592 + x^4*-0.00001190843952919
8 1 + x^2*-0.00000337009968184

16 1 + x^2*-0.00000018280736434
32 1 + x^2*-0.00000001096502600

6p 5o Hermite 1 1 + x^2*0.00020114336420553 + x^4*-0.00039890572473931 +
x^6*-0.00229556927556134 + x^8*0.00033156072749299 +
x^10*-0.00001939518424822 + x^12*0.00000044492173307

2 1 + x^2*0.00018449827272179 + x^4*-0.00012076518704688 +
x^6*-0.00001656712931157

4 1 + x^2*0.00002231671196743 + x^4*-0.00000765304111907
8 1 + x^2*-0.00000069755852979

16 1 + x^2*-0.00000003814496217
32 1 + x^2*-0.00000005120943160

4p 5o 2o-osculating 1 1 + x^2*-0.00003810731746664 + x^4*-0.01125635108311614 +
x^6*0.00093446715934087 + x^8*-0.00003596438901587 +
x^10*0.00000062492114797

2 1 + x^2*-0.00002472867620723 + x^4*-0.00069142841070279 +
x^6*0.00001220808924164

4 1 + x^2*-0.00000942733874677 + x^4*-0.00004105609626839
8 1 + x^2*-0.00002230797701725

16 1 + x^2*-0.00000086708780524
32 1 + x^2*0.00000015624344717

6p 5o 2o-osculating 1 1 + x^2*0.00016728745643872 + x^4*-0.00033180499542066 +
x^6*-0.00214224354648566 + x^8*0.00030186179619621 +
x^10*-0.00001731224751541 + x^12*0.00000039135210540

2 1 + x^2*0.00016735375130858 + x^4*-0.00010930555207958 +
x^6*-0.00001577254673146

4 1 + x^2*0.00002069410150064 + x^4*-0.00000708601491651
8 1 + x^2*-0.00000032041779301

16 1 + x^2*0.00000047022487877
32 1 + x^2*0.00000011755621969

4p 2o Watte tri-lin. 1 1 + x^2*0.08310376973158973 + x^4*-0.03579156791607385 +
x^6*0.00334209365628805 + x^8*-0.00014883957926161 +
x^10*0.00000289107920861

2 1 + x^2*0.02073112144393299 + x^4*-0.00219214872746441 +
x^6*0.00004267336546731

4 1 + x^2*0.00517460473851293 + x^4*-0.00012980516326426
8 1 + x^2*0.00130153324464790 + x^4*-0.00000863514074959

16 1 + x^2*0.00032103211425380
32 1 + x^2*0.00008109888849582

4p 2o Parabolic 2x 2 1 + x^2*-0.06246359855072939 + x^4*0.00154144387052042 +
x^6*-0.00001835446617397

4 1 + x^2*-0.01561067013990179 + x^4*0.00009300879607293
8 1 + x^2*-0.00385657590779811

16 1 + x^2*-0.00097344704925316
32 1 + x^2*-0.00024394574160357

Table: Polynomial approximations of interpolator passband responses (. . .)

9. Conclusion 64

Type Interpolator N Polynomial approximation of passband magnitude response
2p 3o Optimal 2x 2 1 + x^2*-0.02554619677843794 + x^4*0.00024013379174846

Optimal 4x 4 1 + x^2*-0.00574208273496733 + x^4*0.00001315216245712
Optimal 8x 8 1 + x^2*-0.00135618642176540
Optimal 16x 16 1 + x^2*-0.00033233240729770
Optimal 32x 32 1 + x^2*-0.00008223446937757

4p 2o Optimal 2x 2 1 + x^2*-0.06789983241024726 + x^4*0.00187396896433240 +
x^6*-0.00002473496367671

Optimal 4x 4 1 + x^2*-0.02170313823333328 + x^4*0.00015782661814829
Optimal 8x 8 1 + x^2*-0.00728405982348531 + x^4*0.00001497426641413
Optimal 16x 16 1 + x^2*-0.00279971126703223
Optimal 32x 32 1 + x^2*-0.00119086264779340

4p 3o Optimal 2x 2 1 + x^2*-0.05172434622344999 + x^4*0.00118064718929264 +
x^6*-0.00001377425931894

Optimal 4x 4 1 + x^2*-0.01252685934677141 + x^4*0.00006772267827786
Optimal 8x 8 1 + x^2*-0.00305463592329826
Optimal 16x 16 1 + x^2*-0.00076445772774392
Optimal 32x 32 1 + x^2*-0.00019096370951489

4p 4o Optimal 2x 2 1 + x^2*-0.05288134845267101 + x^4*0.00123174456487270 +
x^6*-0.00001459486840119

Optimal 4x 4 1 + x^2*-0.01209875686296254 + x^4*0.00006330069200420
Optimal 8x 8 1 + x^2*-0.00293014841707120
Optimal 16x 16 1 + x^2*-0.00073452725013589
Optimal 32x 32 1 + x^2*-0.00018375385546417

6p 4o Optimal 2x 2 1 + x^2*-0.09926567184099210 + x^4*0.00436972559074357 +
x^6*-0.00011145259389693 + x^8*0.00000150855440787

Optimal 4x 4 1 + x^2*-0.04104326668505586 + x^4*0.00054795446283906 +
x^6*-0.00000365948234725

Optimal 8x 8 1 + x^2*-0.01684372350477612 + x^4*0.00006032275579243
Optimal 16x 16 1 + x^2*-0.00764482449535352 + x^4*0.00000744158606948
Optimal 32x 32 1 + x^2*-0.00357265950908555

6p 5o Optimal 2x 2 1 + x^2*-0.08084154876655289 + x^4*0.00293944745701822 +
x^6*-0.00005171508704785

Optimal 4x 4 1 + x^2*-0.01880393544082998 + x^4*0.00015408893922917
Optimal 8x 8 1 + x^2*-0.00465275707182741 + x^4*0.00000997264487197
Optimal 16x 16 1 + x^2*-0.00114503636967797
Optimal 32x 32 1 + x^2*-0.00026762900966793

Table: Polynomial approximations of interpolator passband responses

9. Conclusion

The presented optimal interpolators make it possible to do transparent-quality re-
sampling for even the most demanding applications with only 2x or 4x oversampling
before the interpolation. However, in most cases simple linear interpolation com-
bined with a very high-ratio oversampling (perhaps 512x) is the optimal tradeoff. The
computational costs depend on the platform and the oversampling implementation.

9. Conclusion 65

Therefore, which interpolator is the best is not concluded here. You must first decide
what quality you need (for example around 90dB modified SNR for a transparency
of 16 bits) and then see what alternatives the table given in the summary has to
suggest for the oversampling ratios you can afford.

